

# FACULTY OF ENGINEERING AND SUSTAINABLE DEVELOPMENT Department of Building, Energy and Environmental Engineering

# Investigation of the energy performance and renovation opportunities in a historic building

using questionaire and assessment scale for decision making and improving energy performance.

Suresh Panicker

June 2019

Student thesis, Master degree (one year),15 HE

Energy Systems

Master Programme in Energy Engineering, Energy Online

Supervisor: Roland Forsberg & Abolfazi Hayati Examiner: Taghi Karimipanah

# Acknowledgements

I take this opportunity to thank Roland Forsberg who helped in getting contacts with the building owners of this historic building and conducting measurements. I must admit that this study was feasible with his valuable inputs, coaching as well as his constant encouragement.

I am also thankful to Prof Abolfazi Hayati for his critical observations in giving this thesis its final form.

I am deeply grateful to my examiner Prof. Taghi Karimipanah, Gävle University College for his continuous support and valuable guidance during this study.

I am very thankful to Martin Schmidt, partner, Ledstången AB the present owners of this historic building. He helped by sharing the energy deklaration, mandatory ventilation control and energy use data for the last three years and also providing with the available drawings for this study.

I take this opportunity to thank Anna-Lena Ekgren, department manager for BUP, mellanvård, sydöst, Stockholms Läns Landsting for granting persmission to send questionaire to her staff working in this building as it is their present workplace.

I shall thank Tor Broström who is a professor in Conservation at Uppsala University Campus Gotland. With his help I could contact OPERA-MILP researcher at Linköpings University (www.liu.se) to explore whether LCC optimisation could be used in this study.

Finally, I take this opportunity to thank my family for their support during my thesis work.

#### Abstract

On a global scale it is estimated that the building sector accounts for about 35% of the final energy use. The building sector accounts for nearly 40% of energy demand in European union (EU) and in Sweden too it is almost the same percentage demand. It is also known that more than 40% of the residential buildings in Europé were built before 1960 when the energy performance regulations for buildings were not so strict in view of the climate change objectives.

Compared to other countries in the EU, Sweden has a large number of listed or historic buildings as almost 15% of multi-family buildings and 27% of all single-family houses in Sweden were built before 1945. However it also stated that research on listed buildings energy efficiency potential and indoor environment is very scarce in Sweden.

Due to climate change and the need to reduce greenhouse gas emission (mainly CO<sub>2</sub>) associated with reduction in energy use in buildings is very evident. Some buildings are of heritage significance due to their historical, architectural or cultural values. The Swedish standard SS-EN 16883:2017 refers to them as listed or historic buildings. This standard does not presuppose that all historic buildings need energy performance improvements. The use of this standard is not limited to historic building with heritage values however it can also be applied to historic buildings of all ages and types.

This study presents an assessment of a historic building built around 1945 where both the building owners energy use data and the building tenants or users indoor environment perceptions includes their expectations on daylight needs, illumination, temperature control or heating and ventilation are evaluated by the assessment scale methodology recommended in the Swedish Standard SS-EN 16883:2017.

The results obtained have been presented on an assessment scale as per SS-EN 16883:2017 also considering the building users perceptions of the indoor work environment. This could be a basis for future decision making for the building owner considering the planned investments on prioritized and feasible energy effective measures. Thus this study is based on quantitative approach. This assessment scale decision making model can be a basis for future building investigations and investments

plans in building refurbishments leading to improvements in energy performance of this historic building.

# Keywords:

english

Listed building, Energy performance, Energy efficient measures, historic buildings, Energy use, Indoor environment, Building survey and accessment, Energy efficient measures.

# swedish

Byggnadsminne, Energiprestanda, förbättring av energiförbrukning, historiska byggnader, energianvändning, inomhusmiljö, byggundersökning och bedömning, energieffektiva åtgärder.

# Nomenclature

BBR Boverkets mandatory provisions and general

recommendations.

AFS Arbetsmiljöverkets författningssamling-Swedish authority

for work environment: Work environment Laws and

regulations.

PBA Planning and Building Act(2010:900)

PBO Planning and Building ordinance (2011:338)

EPBD Energy performance of building.

SS-EN 16883: 2017 Swedish standard – Conservation of cultural heritage:

Guidelines for improving the energy performance of historic

buildings.

OVK Obligatorisk ventilations kontroll-Regulations regarding

performance inspections of ventilations systems are given in

PBO, in the Boverkets mandatory provisions and general

recommendations (2011:16) on performance inspections of

ventilations systems and certification of expert performance

inspectors.

LCC Life cycle cost analysis.

SEA Swedish energy agency – Energimyndigheten

EU European union.

IVL Swedish environmental research Institute.

BUP present Building users: Barn- & ungdomspsykiatri

mellanvård Sydost, Stockholms Läns Landsting.

GHG Greenhouse gases.

SBS Sick building syndrome

Symbols and abbreviations used in the report are defined here, e.g:

| Symbol | Description                         | Unit                        |
|--------|-------------------------------------|-----------------------------|
| Atemp  | energy performance for heating only | kWh/m² per year             |
| °C     | air temperature                     | degrees celcius             |
| 1/s    | air flow rate                       | liter/second                |
| $CO_2$ | carbon dioxide content              | carbon dioxide              |
| lm     | luminous flux                       | Lumen                       |
| dBA    | decibel                             | Unit for sound measurements |
| %      | percentage                          | percent                     |
| $m^2$  | area                                | square meter                |
| $m^3$  | volume                              | cubic meter                 |

# **Table of Contents**

| 1. | Intr    | oduction                                                                     | 1    |
|----|---------|------------------------------------------------------------------------------|------|
|    | 1.1     | Background                                                                   | 1    |
|    | 1.2     | Literature review                                                            | 2    |
|    | 1.3     | Aims                                                                         | 3    |
| 2. | The     | eory                                                                         | 5    |
| 3. | Me      | thod                                                                         | 8    |
|    | 3.1     | Materials                                                                    | 8    |
|    | 3.2     | Procedure                                                                    | . 12 |
| 4  | Res     | ults and analysis                                                            | . 15 |
| 5  | Dis     | scussion                                                                     | . 32 |
| 6  | Cor     | nclusions                                                                    | . 35 |
|    | 6.1     | Study results                                                                |      |
|    | 6.2     | Outlook                                                                      |      |
|    | 6.3     | Perspectives                                                                 | . 38 |
| R  | eferenc | es                                                                           | . 40 |
| A  | ppendi  | x                                                                            | . 42 |
|    | -       | ndix A                                                                       |      |
|    | Table   | 1 Assessment categories and criteria of possible measures                    | . 42 |
|    |         | 2 assessment scale                                                           |      |
|    |         | ndix B                                                                       |      |
|    | 1 1     | ndix C                                                                       |      |
|    |         | sh standard SS EN 16883:2017                                                 |      |
|    | Conse   | rvation of cultural heritage – Guidelines for improving the energy performan | ice  |
|    | of hist | toric buildings.                                                             | . 48 |
|    | Apper   | ndix D                                                                       | . 49 |
|    | Energ   | y declaration for Skulptörvägen 8, Johanneshov                               | . 49 |
|    |         | ndix E                                                                       |      |
|    | OVK     | report                                                                       | . 50 |
|    |         |                                                                              |      |

# 1. Introduction

# 1.1Background

On a global scale it is estimated that the building sector accounts for about 35% of the final energy use as stated in Buildings performance institute Europé.[1]. According to the Swedish Energy Agency overview of 2016 the building sector accounts for nearly 40% of energy demand in European union (EU) and it is almost the same percentage demand in Sweden[2]. It is also stated by "Europes building under the microscope 2011" that more than 40% of the residential buildings in Europé were built before 1960 when the energy performance regulations for buildings were not so strict in view of the climate change objectives.[1] As per SEA 2016 compared to other countries in the EU, Sweden has a large share of listed buildings compared to other countries in the EU as almost 15% of multifamily buildings and 27% of all single-family houses in Sweden were built before 1945. However it was also stated that research on listed buildings energy efficiency potential and indoor environment is very scarce in Sweden. [2] Due to climate change and the need to reduce greenhouse gas emission (mainly CO<sub>2</sub>) which is very evident as it is associated with energy use in buildings. It is known that listed buildings are of heritage significance due to their historical, architectural or cultural values. The Swedish standard SS-EN 16883:2017 refers to them as historic buildings. This standard does not assume that all historic buildings need energy performance improvements. The use of this standard is not just limited to historic building with heritage values however it also applies to historic buildings of all ages and types. [3]

Literature reviews related to listed or historic buildings were found in the database Scopus and also the questionaire for building users shown in Appendix B which is commonly used for office premises was obtained from the IVL rapport, B1604, 2004.[4]

This study presents an assessment of a historic building built earlier than 1945 where both the building owners inputs and the building tenants or users indoor environment self experiences and perceptions are obtained by questionaires and then an assessment of energy efficient measures for improving energy performance is

carried out as per guidelines in the Swedish standard SS-EN 16883:2017.[3] particularly shown in Table 1 and 2 annexed in Appendix A.

#### 1.2 Literature review

It was stated by J Laustsen et al. 2011 that buildings can cause a significant amount of greenhouse gas emissions, mainly CO2, and can alter our planet's climate during coming years. By renovating buildings considering green technologies to higher standards of efficiency it can be demonstrated that ambitious climate change mitigation actions and improvements in indoor climate or environment can be achieved hand in hand.[1] The European commission, 2020 climate and energy action has objective to reduce global warming by focussing on reduction of green house gases. The comission has also published a revised directive on energy performance of buildings which includes requirements for buildings being built or rebuit. This implies changes for listed or historic buildings as defines in SS-EN 16883-2017.[3] Thus managers or owners of listed buildings have to preserve the buildings heritage value while making an efficient use of energy and meet the basic requirements of indoor environment, its operational running costs and energy performance.[5]

It was stated by SEA, 2012 that many of the old buildings had lost part of their heritage values due to inappropriate refurbishment measures like window replacements and facade insulation.[6]. As per P Gluch, 2014 Life cycle cost (LCC) analysis has been recommended as a useful tool from an economic point of view during the renovation of buildings. LCC analysis could be used to find comparable costs for different investment alternatives in building stocks.[7]

According to National board of Housing, Sweden 2010 in terms of energy saving potential in Sweden it is vital to investigate historic building stock because of the fact that older buildings have in general lower thermal performance as compared to newer building stocks.[8] Ståhl et al. 2011 studied listed buildings existing knowledge regarding sustainable and careful renovations and energy efficiency.[9] Liu et al. 2014 studied energy saving potential and LCC of residential buildings including one listed building. [10]

Boström et al. 2014 studied the methods to evaluate the potential for and study the consequences of energy retrofits in swedish historic buildings. [11] Other studies in this field include Judson et al. 2014 studied how listed building owners need to balance emerging needs for environmental sustainability at the same time retaining heritage values using qualitative interviews.[12] Moran et al. 2014 studied the use of passive house planning package a simulation tool to reduce energy use and CO<sub>2</sub> emissions in historic buildings.[13]

The overall conclusion is that the listed or historic building requires an individual approach as they have a heterogenous character due to construction peculiarities, location, applicable laws and heritage values. And there is no single universal solution to make historic buildings energy efficient and preserve their cultural values the guidelines from SS-EN 16883:2917 is utilized in this study.

Another perspective which has been considered in this study is the balance between energy conservation and building conservation. Kohler et al. 2012 stated that it is challenging to improve both the listed buildings energy performance and also to preserve its heritage value. [14]

As stated in the Swedish standard SS-EN 16883:2017 the energy performance is a measurable result related to energy use and energy use is the manner or kind of application of energy. Here the technical building system consists of technical equipment for heating, cooling, ventilation, humidity control, hot water, lighting or could be a combination of some of them. This standard as shown in Appendix C describes a procedure of selecting appropriate measures to improve the energy performance for a historic building.[3]

#### 1.3Aims

The aim of this study is conduct an investigation of the energy performance and renovation opportunities in a historic building.

The specific objectives were:

 To collect available building data from the building owner as indicated in Appendix A as per guidelines in the Swedish standard SS-EN 16883: 2017 for historical buildings.

- To conduct survey by questionaire method as per Annexure B with focus on indoor environment and obtain useful inputs from the present building tenants or users.
- To use the assessment scale as per SS-EN 16883: 2017 and formulate basis for the management decision making by considering inputs from the building owners and building users. In addition consider the minimum requirements of applicable rules and regulations like Boverket(BBR 25), Arbetsmiljöverket (AFS 2009:2) as the building is presently being used as office premises. This shall act as a preliminary decision making method for prioritization of the most appropriate energy efficient measures to be implemented in near future considering the strategic goals of the building owner.

# 2. Theory

The energy performance of historical buildings is attracting growing interest in research and in practice.

Among the building stock in Sweden these are a large number of listed or historic buildings as 15% of all apartments and 27% of all single-family houses were built before 1945[2]. As shown by literature reviews, increasing numbers of articles on energy efficiency measures for historical buildings are being published in peer-reviewed journals. However, there is scarce research on how historical buildings energy performance is dependent on indoor work environment, regulations, considering expectations, behaviors and perceptions of the building users.

To address this gap this study was conducted by using the guidelines as per Swedish Standard SS EN 16883:2017 to decide on energy efficient measures for Conservation of historical buildings and to facilitate improvements in indoor work environment for the building users.

SS-EN 16883:2017 focusses on sustainable management of buildings considering the different aspects of energy performance, conservation and the feedback from the present building users.[3]

In the Swedish standard SS-EN 16883:2017 it has been mentioned that sustainability has four aspects:

- Environmental sustainability: In historic buildings care need to be taken to evaluate the use of materials and energy during the buildings life cycle including its construction, operation, maintenace, refurbishment and demolition and as far as possible renewable energy resources need be utilised to reduce emissions of greenhousegases.
- Economic sustainability: The building owners should consider all economic factors like its present market value, revenues from rents and operating costs and evaluate renovation measures enabling its long term use for other planned future use of the building.

- Social sustainability: Historic buildings also contribute being socially relevant for its present tenants and users and also has an asthetic and social footprint or importance in the nearby surrounding locations.
- Cultural sustainability: Such a building need to be managed in such a manner that its heritage value is retained for its present and future usage.

As the standard aims to assist the historic building owners in applying the standard for energy efficiency measures in the long run.

It presents a systematic management decision making approach to arrive at the most suitable energy efficient measure based on the available data on the above four aspects in this case study.

It is also important to note that this standard states that all historic buildings need not have energy performance improvements considering its individual characteristics. Some of the terms and definitions in the standard (SS-EN 16883:2017) are quoted below for easy reference

"Building" construction as a whole, including its building envelope and all technical building systems, for which energy is used to condition the indoor climate, to provide domestic hot water and illumination and other services related to the use of the building. "Environment" natural, man-made or induced exernal or internal conditions that can influence performance and use of the whole or part of a building.

"historic building" building of heritage significance.

"technical building system" technical equipment for heating, cooling, ventilation, humidity control, hot water, lighting or for a combination there of.

"Investigation" gathering of all information necessary for a conservation decision making process.

"Energy-capacity" of a system to produce external activity or to perform work.

energy performance improvement measure-action to achieve behavioral, design,
economic or technical change leading to verifiable, measurable or estimable energy
performance improvements.

"energy perfomance" measurable results related to energy use and energy consumption.

"Principles of building conservation" The principles of conservation shall be considered when we plan and implement energy performance improvements in historic buildings. All measures shall be in accordance with the building conservation principles given in standards, guidelines and charters.

It is to be noted that maintenace is the best conservation measure. Thus any improvement measure should facilitate continuous preventive maintenace of the building.

# Description of the study object

The building was in use during 1945 as Figure 1 as shown in this engraved stone.



Figure 1: Building name inscribed during 1945

The building Bysten 1 analyzed in this study is located in Stockholm (Sweden), more precisely, in a neighborhood called Johanneslov, located very close to Globen in Stockholm city.

The studied building was build prior to 1945. As it was stated that during 1945 the building was initially used by jewish pensioners who came to Sweden after the second world war. This is a two storeyed building with a basement and is located at Skulptörvägen 8, 121 43 Johanneshov in Stockholm.

# 3. Method

# 3.1 Materials

On site measurements were carried out with Instruments obtained on loan from the Gävle university college as shown Figure 2.

- Air flow meter Swema Twin.
- CO<sub>2</sub> detector Rotronic CL 11
- Air velocity meter TSI VelociCalc Plus model 8360



Figure 2 Measuring instruments used

Since during the study updated building drawings were not available some measurements of air flows in offices were conducted to reconfirm the feedback from the building users.

For the sound and illumination measurements, a mobile app by Arbetsmiljöverket has been used.

Indoor workenvironment survey was conducted using questionaire applicable for office premises as shown in Appendix B.[4]

In addition to survey by questionaire method complementary interviews were conducted telephonically with Triennium Fastighetsentreprenad AB.

#### Building information or data

Table 1: Information of building under study

Property name Bysten 1 Adress Skulptörvägen 8, Stockholm Stockhölms stad Muncipality Frehold/leasehold area Freehold Area building m<sup>2</sup> 1055 Surrounding open area land m<sup>2</sup> 890 Tenant/building user Stockholms Läns Landsting Construction year Around 1945 Fasad Brick tile Construction Concrete Foundation Concrete sole Windows Double glazing Roof felting Concrete roof tiles Ventilation FTX Water & Sewage Muncipality system Heating Oil fired boiler OVK without remarks Ventilation permit Lift Available in the building

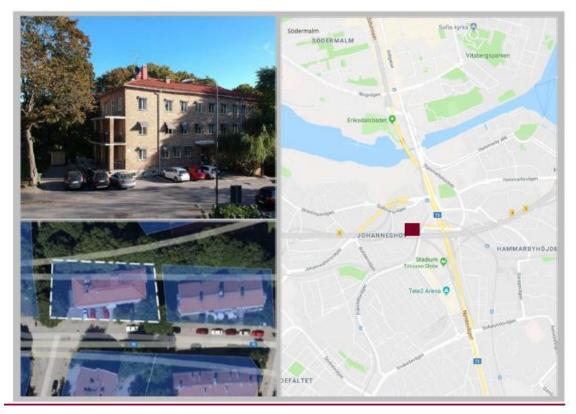
The real estate company Ledstången AB ownes Bysten 1. It has other companies in their group like Svenska Samhällsfastigheter AB and Carlek fastigheter.

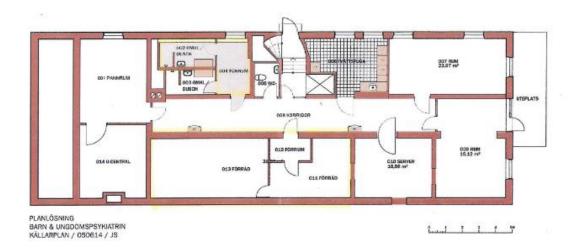
Since 2005 the building is rented out to Stockholms läns Landsting. BUP has about 20 staff members. Their patients or clients are childrens in the age group of 6 to 16 years with need of psychiatric care. The building has offices for staff and group rooms for counselling with individuell clients or childrens alongwith their parents.

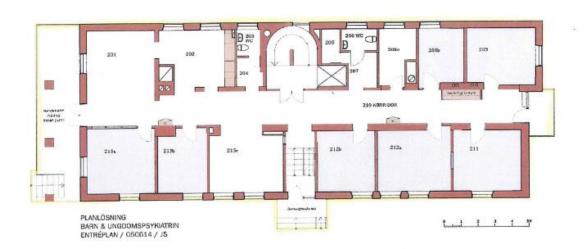
In the basement the staff have a gym for training and presently the attic area or roof floor is utilised for storage and ventilation system is installed in this area.

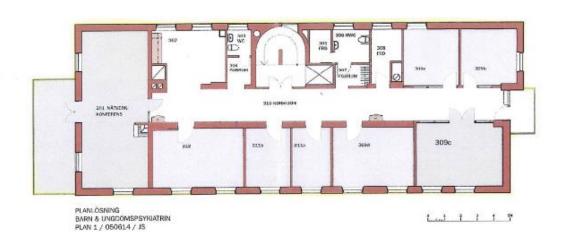
Building user is department: BUP Mellanvård Sydost. Avdelning för närsjukvård Stockholm.

The studied object has an area of approx  $1055 \text{ m}^2$  and outside open area of approx  $890 \text{ m}^2$  is shown in Figure 3.





Figure 3: Building location in Stockholm


The building has a oil fired boiler for heating system. The energy declaration was submitted during 2012 and some measures for reduction in energy use was recommended like explore use of district heating system however it was not studied or implemented at the time of the study.


The present ventilation system with heat recovery (MVHR-FTX) has been in use since 2000. And the oil fired boiler was installed during 1987 (over 32 years). The hot water storage tanks were manufactured during 1945. All pipe linkages for hot water distribution were almost from early 1945.

The building owners could share information on last energy declarations reports. Last three years trend on energy use and also annual consumption of oil for oil fired boiler and water consumptions for the building was obtained during the study.

# The general layout of the building is shown in Figure 4







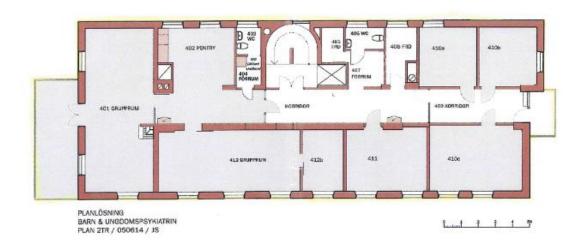



Figure 4: Building layout: Basement, entrance floor, floor 1 and floor 2

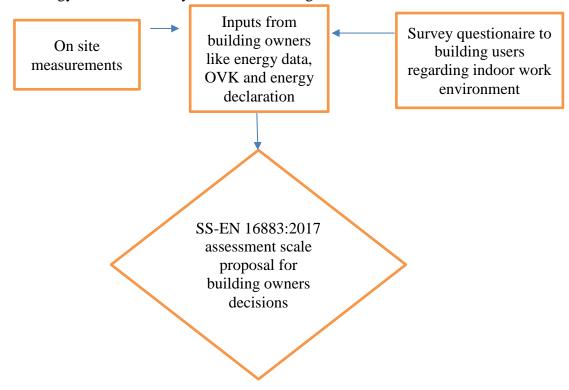
#### 3.2 Procedure

The building owners Ledstången Stockholm AB was sent request to fill in available building information or data as per Annexure A. During visits and mail contacts the energy use data and available information was colected.

As the building owner had secured the property for two years ago. In this study this is also a factor to be noted when historical buildings have several different owners under their life time. Also lack of updated drawings, inadequate information from building maintenance system and also lack of time to verify the building technical data has compelled the researcher to make certain assumptions which is stated during evaluation.

On receiving the inputs attempt has been made to compare and evaluate the risk assessment to identify the best energy efficient measures and propose elimination of inappropriate ones during the later implementation phase.

This methodology is also in line with the recommedations of the Swedish work environment authority rules on work environment systems 2001:1 where it is always recommended that employers regularly conduct assessments and surveys by discussions or questionnaire and seek feedback from the staff working in the building premises and evaluate the risks perceived by users and then evaluate the measures for improvements by dialogue and negotiations with the building owners considering the present building users needs, the available technology and organizational capability considerations the


minimum requirements for health, safety and indoor workenvironment applicable for the present building use i.ex as office premises.

As mentioned in SS-EN 16883:2017 as building users behavior is known to influence in efficient energy use and result in significant energy savings without even investing in significant retrofits or alterations in the building. A seperate survey questionaire as shown in Annexure B which was obtained from IVL report 1604, 2004 was sent by Google docs email in Swedish language for the inputs from the building users.

The intention of the study is to use both the shareholders i.e. the present building owners and building users inputs and assess the energy performance measures to achieve the building owners energy and climate goals and also improve the indoor workenvironment for the building users.

A combination of methods has been used in this study, including a survey on indoor environment by questionaire, feedback from the building owners regarding energy use and on-site measurements of air flows, heating, CO<sub>2</sub> and illumination.

The methodology used in this study is illustrated in Figure 5.



 $Figure\ 5: Methodology\ approach\ used\ in\ this\ study$ 

The survey on indoor environment was conducted by sending questionaires to the building users and also three physical visits were made to the building site to conduct measurements and telephonic interviews with building maintenance staff.

Due to convenience of participants Interviews with building maintenace staff and oil supplying company was conducted by telephone.

The building owners has a vision to achieve sustainability goals with a management decision processes considering the environmetal, economic, social and cultural aspects to maintain the building stock for the present and future use.

It is typical for historic or listed buildings to change owners and be used for different end use. A company from Gävle named Triennium Fastighetsentreprenad AB (www.triennium.se) has recently secured contract for maintenace and caretaking of the property as it acquired the earlier caretaking company named Adriana AB. So it was good opportunity to study this object with changed owners and new staff for maintenace and caretaking.

# 4 Results and analysis

Energy use

Electricity distributor Ellevio

Agreement With Mälar Energi

Customer name Svenska Samhällsfastigheter Bysten AB

Customer no 4055422

Actual consumption during 2017 upto 30 190 kWh

may 2018

Total extimate during 2019 27 371 kWh

Last electricity measurement done 2019-05-01

Type of measurement Monthly

Meter type C1

Energy meter number 7613207912945192

Meter installed date 2009-02-09

Constant 1

Active network contract Simple

Contract valid from 2015-11-01

# Electricity consumption data from 2018-2019 is shown in Figure 6

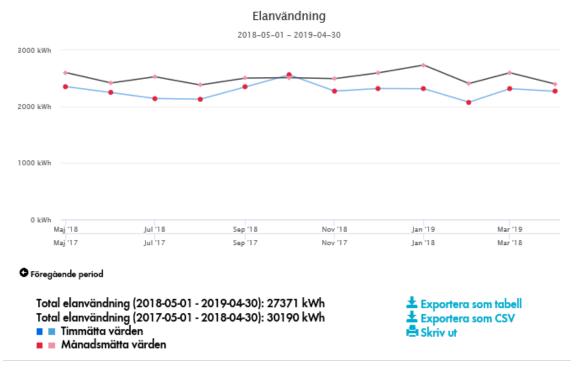



Figure 6 Energy use during 2017-19

# Electricity use during 2015-2019 is shown in Figure 7.



Figure 7 Energy use 2017-19

Electronic equipments utilised in the buildings were

Televisions, digital video players, desktoptop computers, halogen lamps and about 35 tube lights. Energy use: 30 190 kWh per year (during 2017-18)

In this study we assumed that about 30% energy use was for office consumption. These assumptions can be done as per Energu audits of Buildings, SIS publication 2007(20).

Quality control or verification of the Building owners information or data on rents/maintenace expenditures could not be done during the study.

Studied energy declaration from 2012 as shown in Appendix D and the energy use data from 2015-2019 from Ellevios meter readings revealed that the building has a energy demand of 293 kWh/m² and year of which the electricity demand was about 17 kWh/m² and year (annual consumption then was approximately 21.823 kWh/m²). The present electricity consumptions reveal that electricity use has increased. Possible reasons could be due to replacement of fans or increase in the use of office equipments or due to leakages and transmission losses in the building envelope. It needs careful detailed study and analysis of leakages in the windows, open doors, attic floor with broken windows etc need to be maintained as corrective measures.

Building has only one energy meter which registers total energy use for the building including heating, hotwater, building and office electricity usage. Present electricity contract per phase and fuse type is 3x25A. The present last three years energy use is varying between 25.500 kWh to 30.000 kWh per year. The building owners need to investigare it further by initiating closer controls.

#### Ventilation system information

- Mandatory Ventilation control certificate as shown in Apendix E was conducted during 2017 and without any remarks. Report was considered OK by the certified person as there was no remarks or suggestions for improvements.
- Ventilation system: Installation year 2000, Product type: ESC-18-00-N1-LS/FTX. Product name: IV product, Type name: LA1, filter klass: F7 and final pressure drop 200 Pa.
- Heat pump and heat exchangers manufacturing year: 2000.

fans and air flows at the ventilation unit was without any deviation remarks from

the certifying person in OVK shown in Appendix E.

Operating hours for ventilation system: 07:00 to 18:00hrs

• Last change in air flows done: data was not available at the time of study.

Measured air flows in pantry areas on the entrefloor and first floor showed

results which were borderline cases in line with the feedback from the building

users who experienceced insufficient air flows and heating: Just half of the

designed values in offices and pantry area i.e about 9 l/s. And it was satisfactory

as per designed values in toilets approx 20 l/s. Often inadequate heating is the

main cause for compliants in indoor work environment in office room, pantry

and group rooms in the building which in turn has to also comply with air flows

like 7 l/person och second plus 0.35 l/ m² floor area requirements by AFS

2009:2 needed for office premises.

CO<sub>2</sub> measurements in single user offce was approximately between 400 to 650 ppm.

Minimum requirements is to maintain it below 1000 ppm. It could be stated that further

measurements need be dome in group rooms during counselling with patients to see

whenther the limits are exceeded. Else suitable ventilation solutions need be investigated.

Illumination in the corridor were between 350-450 lumen and in offices facing towards

road there was enough day light available. Sound levels in corridor and office was

between 40 to 50 dBA.

Indoor temperature: between 21-22 °C.

Oil fired boiler

Oil fired boiler: manufacturing year 1945.

• Boiler efficiency: 75%

• Effect: 90 kW.

• Installation/location: In basement

• Other observations: present regulation valves manual. Could be replace by auto

valves.

• Use of oil: approx 19.384 m<sup>3</sup>/year, consumption data was taken directly from the

oil distributor.

18

Looking at the below consumption we could see that the boiler had almost consumer about 12.389 m<sup>3</sup> uptill may 2019.

| 2018                               | 2019                         |
|------------------------------------|------------------------------|
| 27 jan 3,875 m <sup>3</sup>        | 21 jan, 3,752 m <sup>3</sup> |
| 28 feb 3,253 m <sup>3</sup>        | 17 feb, 2,712 m <sup>3</sup> |
| 29 mar, 3,286 m <sup>3</sup>       | 19 feb, 1,553 m <sup>3</sup> |
| 8 maj, 2,207 m <sup>3</sup>        | 14 mar, 1,952 m <sup>3</sup> |
| 30 aug, 0,06 m <sup>3</sup>        | 17 apr, $2,42 \text{ m}^3$   |
| 7 nov, 2,46 m <sup>3</sup>         |                              |
| $14 \text{ dec}, 1,06 \text{ m}^3$ |                              |
| $27 \text{ dec}, 3,76 \text{ m}^3$ |                              |

CO<sub>2</sub> emisisons only with the oil consumption data for 2018 is approx

= 
$$19.384 \times 2,68 \text{ ton } CO_2/m^3 = 51.94912 \text{ ton } CO_2/m^3$$

[Oil used is E01 E10 max, 0.05 % S (coloured)]

So need is to explore potential for electric heating or district heating and replace the oil fired boiler.

 Any feedback from building care taker on the faults/repairs undertaken during last five years were unavailable during the study.

Other electricity needs, If electricity was used for heating car engines: no

#### **Environmental factors**

- Renovations with damaged Building materials containing asbest etc: unavailable during the study.
- Radon measurements: unavailable.

#### Other information

- Lift available
- Water and sewage: Stockholms städ, muncipality system

# Water consumption

Floorheating and roof heating not available. Installed water meter since 2012. Average water consumtion approx 576 m<sup>3</sup>. In this study we assumed that hot water consumption was about 20% of the total water consumtion based on Åsa W et al. 2007[20]. Use of hot water is generally low in offices as few take shower in such facilities compared with school buildings.

Solar heating: not utilised.

Data on use of renewable energy sources: not installed or used.

Feedback from the building owners

As per table 1 of SS-EN 16883:2017 - Annexure A — assessment categories and criteria of possible measures the following inputs were obtained from the building owners

Table 2 Building owners feedback based on SS-EN 16883:2017

| Assessment    | Assessment         | feedback           | Suggested          |
|---------------|--------------------|--------------------|--------------------|
| category      | criteria           |                    | performance        |
|               |                    |                    | improvement        |
|               |                    |                    | measures           |
| Technical     | hygrothermal risks | Unavailble at the  | Monitoring of the  |
| compatibility |                    | time of the study. | ventilation system |
|               |                    |                    | and replacement    |
|               |                    |                    | of the oil fired   |
|               |                    |                    | boiler. Reduce     |
|               |                    |                    | windows            |
|               |                    |                    | transmission       |
|               |                    |                    | leakages, study    |
|               |                    |                    | need based         |
|               |                    |                    | ventilation system |
|               |                    |                    | and initiate a     |
|               |                    |                    | subsequent         |
|               |                    |                    | building survey    |
|               |                    |                    | and assessment     |

|                     |                     |                         | for detailed plan approvals. |
|---------------------|---------------------|-------------------------|------------------------------|
|                     | structural risks    | Same as above           |                              |
|                     | corrosion risks     | Same as above           |                              |
|                     | salt reaction risks | Same as above           |                              |
|                     | biological risks    | Same as above           |                              |
| Heritage            | risk of material,   | Present building        |                              |
| significance of the | constructional,     | owner confirmed         |                              |
| building and its    | structural          | building as a listed or |                              |
| settings            | impact              | historic building.      |                              |
|                     | risk of             | Same as above           |                              |
|                     | architectural,      |                         |                              |
|                     | aesthetic, visual   |                         |                              |
|                     | impact              |                         |                              |
|                     | risk of spatial     | Same as above           |                              |
|                     | impact              |                         |                              |
| Economic viability  | capital costs       | Likely Investment       | Needs a                      |
|                     |                     | based on LCC.           | subsequent                   |
|                     |                     |                         | detailed                     |
|                     |                     |                         | discussion on                |
|                     |                     |                         | existing rent                |
|                     |                     |                         | contract and                 |
|                     |                     |                         | refurbishments               |
|                     |                     |                         | costs and increase           |
|                     |                     |                         | in building rents            |
|                     |                     |                         | etc.                         |
|                     | operating costs,    | Figures from 2015-      | Review costs                 |
|                     | including           | 16 indicated that       | during 2019-20               |
|                     | maintenance costs   | amount was variable     |                              |
|                     |                     | between SEK             |                              |
|                     |                     | 300,000 to 350,000.     |                              |
|                     |                     | New contract since      |                              |

|        | economic return economic savings                                                                                                                                             | nov 2018 so needs<br>further analysis and<br>review.  Earlier annual rents<br>approx SEK<br>2,000,000  Marginally low |                                                                                                                                                                                                                                                                |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        | <b>6</b>                                                                                                                                                                     | considering frequent maintenance and repairs carried out.                                                             |                                                                                                                                                                                                                                                                |
| Energy | energy performance and operational energy demand in terms of: — primary energy rating (total)  — primary energy rating (non- renewable)  — primary energy rating (renewable) | approx between 27.500 to 30.500 kWh per year. agreement with MälarEnergi, Västerås.  Not considered                   | Explore district heating system or change to electric heating as Oil fired boiler manufacturer does not offer reserve for repairs as unit is over 30 years old.  Considering CO <sub>2</sub> emisisons oil fired boiler should be discontinued during 2019-20. |

|               | Life cycle energy   | Unavailble at the  | Needs further      |
|---------------|---------------------|--------------------|--------------------|
|               | demand in terms of  | time of study.     | building survey    |
|               | use of              |                    | and assessment.    |
|               | renewable primary   |                    |                    |
|               | energy and          |                    |                    |
|               | nonrenewable        |                    |                    |
|               | primary energy      |                    |                    |
| Indoor        | indoor              | Unavailble at the  | Ventilation        |
| environmental | environmental       | time of study.     | system needs       |
| quality       | conditions suitable |                    | overhaul and also  |
|               | for                 |                    | adjustments of air |
|               | building content    |                    | flows need be      |
|               | preservation        |                    | done so that       |
|               |                     |                    | building users     |
|               |                     |                    | always get the     |
|               |                     |                    | minimum            |
|               |                     |                    | recommended air    |
|               |                     |                    | flows as per       |
|               |                     |                    | Swedish work       |
|               |                     |                    | environment        |
|               |                     |                    | applicable rules.  |
|               |                     |                    | AFS 2009:2.        |
|               |                     |                    | Target objective   |
|               |                     |                    | should be to       |
|               |                     |                    | ensure saisfaction |
|               |                     |                    | with indoor        |
|               |                     |                    | environment.       |
|               | indoor              | Unavailable at the |                    |
|               | environmental       | time of the study  |                    |
|               | conditions suitable |                    |                    |
|               | for                 |                    |                    |
|               | building fabric     |                    |                    |
|               | preservation        |                    |                    |

|               | Indoor              | OVK report             | Functional test of   |
|---------------|---------------------|------------------------|----------------------|
|               | environmental       | conducted during       | the ventilation      |
|               | conditions suitable | 2012 was available     | system               |
|               | for                 | for study.             | recommended.         |
|               | achieving good      |                        |                      |
|               | occupant comfort    |                        | Maintenace           |
|               | levels              |                        | instructions need    |
|               |                     |                        | to be reviewed,      |
|               |                     |                        | updated and          |
|               |                     |                        | implemented with     |
|               |                     |                        | new building         |
|               |                     |                        | maintenace           |
|               |                     |                        | personnel.           |
|               | emission of other   | No comments or         | Measurements of      |
|               | harmful substances  | remarks in OVK.        | air quality          |
|               |                     |                        | recommended          |
|               |                     |                        | based on building    |
|               |                     |                        | users inputs.        |
| Impact on the | greenhouse gas      | Evaluated only the     | Consumption of       |
| outdoor       | emissions from      | oil consumed by the    | oil for heating is   |
| environment   | measures            | oil fired boiler.      | to be discontinued   |
|               | implemented and     | In similiar way other  | due to Boverkets     |
|               | operation           | activities like use of | BBR 25 and           |
|               |                     | vehicles, office       | Naturvårdsverkets    |
|               |                     | equipments or          | new                  |
|               |                     | operating times etc    | requirements.        |
|               |                     | can be studied.        | It is also desirable |
|               |                     |                        | to meet national     |
|               |                     |                        | energy and           |
|               |                     |                        | climage goals.       |
|               |                     |                        |                      |
|               |                     |                        |                      |
|               |                     |                        |                      |

|                | natural resources   | Day light adequate.   | Need to review      |
|----------------|---------------------|-----------------------|---------------------|
|                | use                 |                       | day light           |
|                |                     |                       | conditions in the   |
|                |                     |                       | gymnasium in the    |
|                |                     |                       | basement.           |
| Aspects of use | influence on the    | Presently used as     | Building users      |
|                | use and the users   | office premises. few  | need to be          |
|                | of the              | building users have   | involved in         |
|                | building            | been at the same      | effective use of    |
|                |                     | workplace since       | energy and          |
|                |                     | 2005, so we had good  | control of          |
|                |                     | opportunity to seek   | ventilation,        |
|                |                     | their perceptions of  | illumination and    |
|                |                     | indoor environment    | heating system      |
|                |                     | in the questionaire   | could optimise      |
|                |                     | survey.               | energy use &        |
|                |                     |                       | controls.           |
|                | consequences of     | Not available at the  |                     |
|                | change of use       | time of study.        |                     |
|                |                     | Building could be     |                     |
|                |                     | suitable as school or |                     |
|                |                     | old age homes in      |                     |
|                |                     | future considering    |                     |
|                |                     | applicable rules and  |                     |
|                |                     | regulations.          |                     |
|                | consequences of     | Not available at the  |                     |
|                | adding new          | time of study         |                     |
|                | technical room      |                       |                     |
|                | ability of building | agreement with        | Could be            |
|                | users to manage     | Triennium             | beneficial to carry |
|                | and                 | Fastighetsantreprenad | out joint visits    |
|                | operate control     | AB a Gävle based      | and share results   |
|                | systems             | company having        | with the building   |

|  | office in Stockholm.    | users to raise their |
|--|-------------------------|----------------------|
|  | Presently they have     | conficence levels    |
|  | telephone helpline      | and find suitable    |
|  | services where the      | knowledge            |
|  | personnel decide to     | sharing meetings     |
|  | send maintenace staff   | with building        |
|  | to visit building on as | users.               |
|  | required basis.         |                      |
|  |                         |                      |

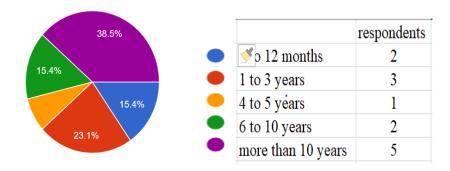
During telephonic interview it was evident that building maintenace personnel desired more information or training requirement on maintanence of Ventilation system and heating system. They received more compliants about air flow and heatings from the building users. It was a challenge for maintenace staff as all documentation was not available and major repairs statistic was not updated.

Also need was felt for updated operations and maintanence instructions from manufacturers of oil fired boiler and ventilation systems. This is crucial aspect when companies get acquired by other companies that the company management has to make necessary investments in training of their staff and also use maintenace programs to analyse frequent failures etc so that the building users needs and requirements of indoor work environment are fulfilled in addition to the end objective of effective use of energy.

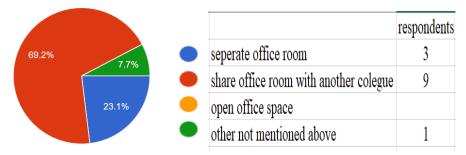
In this study the questionaire called Örebro enkäten as shown in Annexure B is used as a relevant questionaire for investigation of user opinion about perceived indoor work environment.

In this questionaire the question about respondents sex was deleted as it was known that mostly woman employees are working in this building. As we wanted to know respondents opinion in prioritising investments in the work environment. The last question was added from user perspective on which option should the building owner consider in energy retrofit from the indoor work environment perspective.

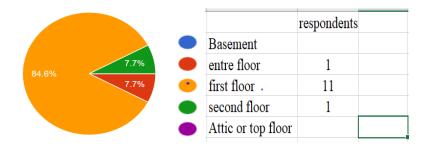
It was clarified to the respondents that the objective of the questionaire was to collect information, analyze and prioritize energy saving measures for this building which happens to be their workplace.


The respondents received the questionaire in Swedish language. It was assured that no personal information would be saved or reported in the study.

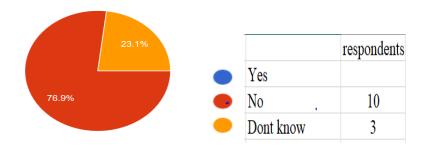
As the survey was voluntary and we could receive anonymous response in Google forms. As the building users comprise of 20 staff. Considering the population size of 20 respondents about 10 days was available to respond to the questionaire.


In this study we have 13 responses from among 20 staff, which is about 66 percent response.

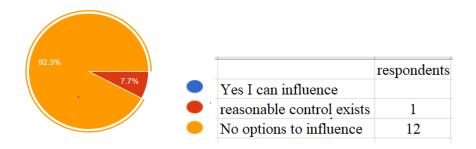
Results and feedback from the questionnaire to the building users is illustrated below


• It was seen that 5 respondents that was almost 38.5 % had worked in the building more than 10 years.

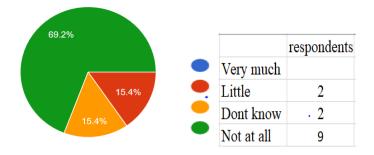



- From the year of birth inputs we could get feedback that respondents had age group between 29 to 60 years.
- Here we could see that almost 9 out of 13 respondents that is almost 69.2% worked in office room shared with other collegues.

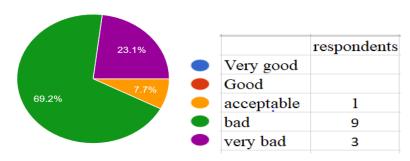



• 11 out of 13 respondents worked on the first floor. That is almost 84.6 % of the respondents stated that they worked on the first floor.

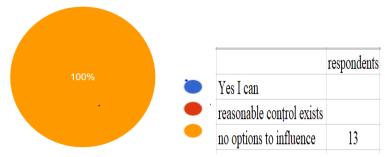



• 10 respondents that is 76.9 % repondents stated that their office was not painted or renovated during the last five years. 3 respondents stated they didnt knew about it.

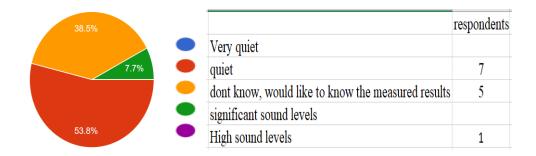



- Almost 9 respondents of 13 stated that they did not have any water leakages or moisture ingression in the rooms and 4 respondents stated that they were not aware of it.
- Almost 11 respondents stated that did not have any any asthma disorders or were affected by ecksem. However 10 respondents stated that they knew some other colleguaes who had cold or other disorders in the building.
- 5 respondents stated that they felt tiredness often in the building and 7 stated that they felt tired sometimes. Only one respondent had headache problem. So building related sickness is not so evident. 11 respondents stated that they had headache sometimes. Other symptoms were not so significant in the building during the last three months.
- 11 respondents stated heating was unacceptable or bad and 2 respondents stated it as very bad during winter and autumn season. Most felt that the heating was acceptable during summer and spring.
- 12 respondents stated that they could not influence or control heating at their workplace. Only one respondent stated it had reasonable control.

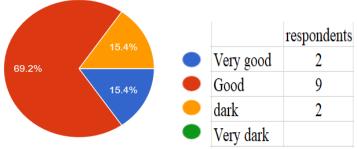



• 9 out of 13 respondents that is almost 69.2% did not experience draught in the workplace. Only two respondents felt little draught.

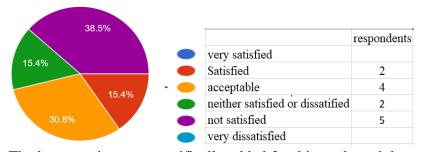



- Only two respondents felt draught at windows or at the door.
- 9 out of 13 respondents perceived air quality was unacceptable or bad. 3 respondents felt it was very bad. One respondent perceived it as acceptable.




- 12 out of 13 repondents never felt or smelled any undesirable odour at the work place. Only one repondent sometimes felt undesirable odour in the building.
- All 13 repondents stated that had no options to influence or control the air flows or ventilation in the building.




- Almost 10 of 13 respondents did not have any problems with undesirable sound or noise from vehicles on the road or ventilation or washing machine or drainpipes etc in the building.
- 7 repondents felt the workplace was quiet. 5 respondents were unsure and would need a monitored report for verification. Only one respondent felt presence of noice at the workplace.



• 9 out of 13 repondents felt the dayllight availability or illumination was good. Only 2 respondents felt it was dark at their workplace.



Only 4 respondents of 13 rated indoor workenvironment as acceptable. 5 respondents were not satisfied with their indoor workenvironment. 2 respondents were neither satisfied or dissatisfied or satisfied with the indoor work environment. This is high risk factor and so the building owner need to identify the key influencing factors like ventilation and heating system while considering the prioritization of energy efficiecny measures according to assessment scale towards measures to improve the indoor work environment and aim at building users satisfaction.



 The last question was specifically added for this study and the researcher asked the respondents if they had any suggestions for improving energy perfomance of this building. The respondents could suggest more than one energy efficieny measures

5 respondents felt need for effective energy utilization, 10 respondents felt need to initiate measures to reduce pollution and assist mitigate climate change. 8 respondents felt the need to preserve the buildings historical value, about 9 respondents wanted electricity use from renewable energy soorces. However all respondents have chosen more than one alternatives. This is a positive feedback that even the building users given a chance would use mutiple strategies to contribute towards ideas for improving energy performance of buildings.

User control of ventilation and healting and proactive maintenance of the buildings work environment control devices could achive these goals which indirectly will help the building owner improve energy performance and reduce green house emissions.

So we could realise that awareness of the repondents needs and applicable legal requirements and building users feedback for improvements will help in considering the suitability of the ventilation and heating system for the workplace.

### 5 Disscussion

The study started with on site measurements to verify some of the technical information about the performance of the building.

The mesurements included

- The indoor temperature.
- Air flow measurements at some places like office room, pantry areas etc.
- CO<sub>2</sub> measurements in office room.
- Analyse the electricity use of the buildings.

A combination of methods has been used in this study, including a standardized indoor environment questionaire, building owners questionaire based on SS-EN 16883:2017, and on site measurements of indoor environment to assess the internal building environmental conditions that can influence energy performance.

In this study the main approach of data analysis was quantitative. The process of data analysis in this study had two broader pespectives: measured environmental parameters, building owners data as well as building users surveys and researcher observations.

The questionaire was sent by Google docs to the 20 building users. This method will help us investigate how the building users experience the indoor environment.

According to the results and the available building energy consumption data the SS-EN 16883 assessment criterias and scale will be used to evaluate a list of possible measures as a starting point without regard to specific technical properties of heritage significance of the building.

Later the combined measures could be evaluated to achieve the energy and climate goals also considering the minimum requirements of applicable rules and regulations.

The areas where targets could be specified are

- Technical compatibility with existing structural, constructional and technical systems.
- Heritage significance value.
- Energy performance and sustainability aspects.

- Indoor environmental quality
- Impact on outer environment.
- Economic viability of refurbishmnet or retrofit and
- User comfort.

In the studies conducted by Tor Broström et al. 2018 regarding standardizing the indoor climate in historic buildings opportunities, challenges and ways forward the authors described how use of standards and risk management guidelines had focussed more on the decision process rather than outcomes which has been the objective of the conventional approach in the management of historical buildings. It was also mentioned that the by interviewing the building owners and maintenance personnel and integrating the assessment with these organisational objectives could lead to effective building energy management plans as it leads to a wider set of solutions. [17]. The study has explored need of knowledge sharing between building owners and users in decision making. It is recommended that the basis for decision making is further utilised in conjunction with other detailed investigations of building data before evaluation and implementation of building retrofit projects.

The knowledge sharing could could have been a challenge considering the change of building owners and building maintenace personnel during the last 10 years. It could be mentioned here that this is most important barrier to implementation of energy efficient measures and further improvements in energy performance is buildings accurate technical data and regular proactive maintenace of ventilation and heating systems.

The study reveals that though there exists a number of ways to standardize indoor climate control in historical buildings there is shortage of discussion about the decision making process which involves both the building owners and users and using standards which are related to indoor climate control in historical buildings.

Tor Boström et al. 2018 also stated that previous reasearch has shown that risk management guidelines have to be integrated with the building owners existing management decision making processes to be effective else they have a tendency to be live a life of its own detached from the practical reality of situations. The authors highligted the distinction between the intention of applicable standards and the actual

use of standards as it is process of interpretation and translation of standard to implementation which is a challenge as each building has its specific present and future specif use. Further it is also mentioned that a dilemma with standardization is the ambition to find a balance between firm advice and flexibility which is part of real life situations as standards are general whereas practice is specific.[15]

Steven Epsttein et al. 2010 concluded with their experience from how standards are used in practice that less stringent standards which offer greater adaptability may work better than rigidly defined standards. This is more relevant to energy performance and building conservation work of historic buildings as the location of a building and the applicable laws and regulations play a crucial role in the organizational decision making processes that form a basis of matrix for decision making on indoor climate and building energy management.[19]

In the present study we have received feedback based on questionaire from the building tenants or users and it is a form of assessment of indoor environment based on users perception. One way of decision making could be tactical improvement to meet the specific applicable work environment standards considering present and intended future use of the building.

It can be concluded in this report that applicable standards and guidelines will be an important deciding criteria for quality assurance in historical buildings energy management and we need to look at multiple factors in building owners decision making process to achieve the present building user indoor comfort levels and implement simplified decision making processes for continuous improvement of indoor climate and building energy management.

#### 6 Conclusions

#### 6.1Study results

The questionnaire method does not require actual contact with the building users and is a widely used method to collect opinions about the indoor environment which includes air quality, noise situation, indoor temperature and building users perception of building related sickness if any.

Of the total 20 building users 13 responded to the survey. This represents a response rate of 66% which seems acceptable. The data collected from the questionnaire is depicted in a pie chart or bar diagram to see the percentage response.

Three qualitative interviews with building owner, building maintenance personel and supplier of the oil fired boiler was conducted for the study.

The interviews were all connected with the building energy management decision making matrix in the form of risk factors. The aim of the interviews was to explore assessment scales affecting the decision criterias and the outcome of the assessment could be basis for building owners decisions on investments.

As per SS-EN 16883:2017 - SeeAnnexure A an assessment scale is shown below

Table 3 Building owners assessment scale to select packages of measures

| Suggested performance          | High risk                 | Low  | Neutral | Low  | High benefit | Building  |
|--------------------------------|---------------------------|------|---------|------|--------------|-----------|
| improvement measures           |                           | risk |         | bene |              | owners    |
| 1                              |                           |      |         | -    |              | decisions |
|                                |                           |      |         | fit  |              | including |
|                                |                           |      |         |      |              | time plan |
| Energy                         |                           |      |         |      |              |           |
|                                |                           |      |         |      |              |           |
|                                |                           |      |         |      |              |           |
| - High energy use data.        | Energy losses.            |      |         |      | High benefit | Could be  |
| Close monitoring during        |                           |      |         |      |              | decided   |
|                                |                           |      |         |      |              | during    |
| and after office hours to find |                           |      |         |      |              | 2019-20   |
| root cause.                    | CO <sub>2</sub> emissions |      |         |      |              |           |
|                                | not permitted.            |      |         |      |              |           |

| -Oid fired boiler need to be   | Energy saving             | Costs       | High benefit   |  |
|--------------------------------|---------------------------|-------------|----------------|--|
| substituted by either electric | potential.                | could be    | considering    |  |
| heating or district heating    |                           | same        | climate goals. |  |
| system                         | Present boiler is         | considerin  |                |  |
|                                | over dimensioned.         | g oil and   |                |  |
|                                |                           | electricity |                |  |
|                                | Boiler                    | prices.     |                |  |
|                                | manufacturer has          |             |                |  |
|                                | stopped supply of         | However     | High benefits  |  |
|                                | reservspares.             | can meet    | considering    |  |
|                                |                           | sustainabil | climate and    |  |
|                                | So maintenace not         | ity &       | building       |  |
|                                | possible.                 | climate     | heritage       |  |
|                                |                           | goals       | goals.         |  |
|                                |                           |             |                |  |
|                                | Building users            |             | Overhaul and   |  |
|                                | productivity and          |             | adjustments    |  |
|                                | morale getting            |             | of existing    |  |
|                                | affected due to           |             | FTX can        |  |
|                                | discomfort and            |             | deliver the    |  |
|                                | dissatisfaction           |             | desired        |  |
|                                |                           |             | performance.   |  |
|                                |                           |             |                |  |
|                                | CO <sub>2</sub> emissions |             | Beneficial for |  |
|                                | form oil fired            |             | both building  |  |
|                                | boiler                    |             | owner and      |  |
|                                |                           |             | building       |  |
|                                |                           |             | users.         |  |
|                                |                           |             |                |  |
|                                | User controlled           |             | Offers WIN-    |  |
|                                | ventilation and           |             | WIN            |  |
|                                | heating desired.          |             | solutions.     |  |
|                                |                           |             |                |  |
|                                |                           |             |                |  |

| Indoor air quality | Training of         |  | Effective use |  |
|--------------------|---------------------|--|---------------|--|
|                    | building            |  | of            |  |
|                    | maintenace staff    |  | Ventilation   |  |
|                    | and installation of |  | and heating   |  |
|                    | monitoring          |  | systems and   |  |
|                    | sensors for air     |  | indirect      |  |
|                    | flows,              |  | savings in    |  |
|                    |                     |  | energy.       |  |
| Impact on outer    | monitoring could    |  | Returns on    |  |
| environment        | increase            |  | investments.  |  |
|                    | involvement and     |  |               |  |
|                    | feedback on         |  |               |  |
|                    | expected air        |  |               |  |
|                    | quality from the    |  |               |  |
|                    | installed           |  |               |  |
|                    | equipments.         |  |               |  |
|                    |                     |  |               |  |
| Aspects of use     | CO <sub>2</sub>     |  | High benefit  |  |
|                    | Emission            |  | considering   |  |
|                    | reductions          |  | building      |  |
|                    | Present and future  |  | owners        |  |
|                    | use                 |  | strategic     |  |
|                    |                     |  | plans.        |  |

#### 6.2 Outlook

In Sweden the building blocks has many older residential buildings or historical buildings which often have inadequate building envelopes and poor insulation resulting in high energy use and uncomfortable indoor climate for the building users. Improving energy performance in such buildings by suitable refurbishment measures considering the building owners management process and building user inputs could form a reasonable basis for strategic decisions which are beneficial for both building owners and can have significant impact on the building users comfort requirements. It is a key element in

organizations decision making to succeed in prioritizing the energy improvement measures and also meeting the demanding national and EU energy and climate goals.

The building users and their activities in the building including their perceptions of the indoor environment are very important for reducing energy use. However very few studies have focused on end users perspectives and perceptions of the indoor environment. Another advantage of this study is that combining and comparing these factors in decision making assessment scale reveals both way ahead and challenges during the coming years compared with simulation programs which would consider longer life cycle spans and would involve capital intersive investments with inaccurate payback calculations.

#### 6.3 Perspectives

By combining the measurements on site and feedback from both building owners and building users the study had investigated how the buildings energy use and indoor environment can be studied together to arrive at decisions pertaining to measures to improve energy performance of historic building. It is also important to consider the operational costs of such buildings which can typically exceed the construction costs over a life cycle.

On of the most important factor in LCC calculations is the chosen discount rates which depends on the financial situation of the building owner and strategies of the investing company and is always subjective based on inflation and future projections of rents etc. However this choice of discount rates a major impact on LCC ad the optimal solution and package of EEMs included.

The researcher had approached Division of Energy systems, Linköping university to use OPERA-MILP (Optimal Energy retrofits advisory- Mixed integer linear program) to find the cost-optimum energy renovation strategy for this building during its life time. However as this building has a celler or basement and it was not feasible to use OPERA-MILP to determine cost-optimum combination of measures by minimizing LCC. LCC here represents the sum of the investment, running costs and residual value.

It is important to consider the energy efficient measures as a package rather than as individual measures to achieve the energy target. The Energy efficient measures (EEMs) which are included in the package are evaluated as most cost efficient to least cost

efficient. In such a EEM package the profitable measures finance the less profitable measures thus making it possible to achieve a well balanced energy use reduction from both the economic and the efficiency point of views.

Knowledge sharing between the building owners and users has not received sufficient attention and suggest that it is the most important barrier to improvement of energy performance of buildings. So this study has been at attempt to use the standard SS-EN 16883:2017 and suggest measures beneficial for both the building owners and users to reach a WIN-WIN situation for both indoor environment control and Energy effective measures to reduce energy demand considering national legislational and standards. The users of the building and their activities and perceptions are important for effective energy use and betterment of indoor environment in historic buildings.

### References

- Jens Laustsen, Paul Ruyssevelt, David Strong, BPIE, Europe's Buildings Under The Microscope – A Country-by Country Review of the Energy Performance of Buildings. Brussels, Belgium, 2011(ISBN: 9789491143014).
- 2. SEA, Energy in Sweden 2016 (Energiläget 2016), Energy in Sweden facts and figures 2016 (vol. ET2016:02.).
- 3. Swedish standard SS-EN 16883:2017, Svenska Institute for standarder, www.SIS.se.
- 4. Per. Carlson, M. Erlandsson, IVL rappport, IVL Svenska Miljöinstitutet AB, B1604, November 2004.
- 5. European Commission-Climate action, 2020 Climate and Energy action package. 2015 (2015-11-11), http://ec.europa.eu/clima/policies/strategies/2020/index en.htm.
- 6. SEA, Saving and preserving energy efficiency in the listed buildings, (in Swedish): Spara och bevara Energieffektivisering i kulturhistoriskt värdefullbebyggelse, Swedish Energy Agency, Eskilstuna, 2012, ET 2012:02.
- P. Gluch, Perspectives on LCC A Book About Long-Term Decisions andGuidance During Sustainable and Energy-Efficient Renovation of Buildings, Chalmers University of Technology, 2014 (In Swedish).
- National Board of Housing, Building and Planning, Energy Use in Buildings -Technical Characteristics and Calculations- Results from the Project BETSI, (2010) (in Swedish).
- F. Ståhl, M. Lundh, P. Ylmén, Sustainable and Careful Renovation and Energy Efficiency of Listed Buildings – A Prestudy, 48, SP Technical Research Instituteof Sweden, 2011 (In Swedish).
- L. Liu, B. Moshfegh, J. Akander, M. Cehlin, Comprehensive investigation onenergy retrofits in eleven multi-family buildings in Sweden, Energy Build. 84(2014) 704–715.
- 11. T. Brostrom, P. Eriksson, L. Liu, P. Rohdin, F. Ståhl, B. Moshfegh, A method to assess the potential for and consequences of energy retrofits in swedish historic buildings, H. Environ. 5 (July (2)) (2014) 150–166.

- 12. E.P. Judson, U. Iyer-Raniga, R. Horne, Greening heritage housing: understanding home owners'. renovation practices in Australia, J. Hous. Built Environ. 29 (2014) 61–78.
- 13. F. Moran, T. Blight, S. Natarajan, A. Shea, The use of passive House Planning Package to reduce energy use and CO2 emissions in historic dwellings, EnergyBuild. 75 (2014) 216–227.
- 14. N. Kohler, U. Hassler, Alternative scenarios for energy conservation in the building stock, Build. Res. Inf. 40 (2012) 401–416.
- 15. Gustaf Leijonhufvud & Tor Broström (2018) Standardizing the indoor climate in historic buildings: opportunities, challenges and ways forward, Journal of Architectural Conservation, 24:1, 3-18, DOI: 10.1080/13556207.2018.1447301
- 16. Stefan Timmermans and Steven Epstein, 'A World of Standards but Not a Standard World: Toward a Sociology of Standards and Standardization', Annual Review of Sociology 36, no. (2010): 69–89, doi:10.1146/annurev.soc.012809.102629.
- 17. Gustaf Leijonhufvud & Tor Broström (2018) Standardizing the indoor climate in historic buildings: opportunities, challenges and ways forward, Journal of Architectural Conservation, 24:1, 3-18, DOI: 10.1080/13556207.2018.1447301
- 18. Nils Brunsson, Andreas Rasche, and David Seidl, 'The Dynamics of Standardization: Three Perspectives on Standards in Organization Studies', Organization Studies 33, nos. 5–6 (2012): 613–32.
- 19. Stefan Timmermans and Steven Epstein, 'A World of Standards but Not a Standard World: Toward a Sociology of Standards and Standardization', Annual Review of Sociology 36, no. (2010): 69–89.
- 20. Karin Adalberth, Åsa Wahlström, Energy audits of Buildings"Energibesiktning av byggnader" SIS publication. SS HB 10, ISSN 0347-2019, 2007.

# Appendix Appendix A

Table 1 Assessment categories and criteria of possible measures

| Assessment category          | Assessment criteria                                           |
|------------------------------|---------------------------------------------------------------|
| Technical compatibility      | hygrothermal risks                                            |
|                              | structural risks                                              |
|                              | corrosion risks                                               |
|                              | salt reaction risks                                           |
|                              | biological risks                                              |
| Heritage significance of the | risk of material, constructional,                             |
| building and its settings    | structural                                                    |
|                              | impact                                                        |
|                              | risk of architectural, aesthetic, visual impact               |
|                              | risk of spatial impact                                        |
| Economic viability           | capital costs                                                 |
|                              | operating costs, including maintenance costs                  |
|                              | economic return                                               |
|                              | economic savings                                              |
| Energy                       | energy performance and operational energy                     |
|                              | demand in terms of:                                           |
|                              | <ul><li>primary energy rating (total)</li></ul>               |
|                              | — primary energy rating (non-                                 |
|                              | renewable)                                                    |
|                              | — primary energy rating (renewable)                           |
|                              | Life cycle energy demand in terms of use of                   |
|                              | renewable primary energy and nonrenewable                     |
|                              | primary energy                                                |
| Indoor environmental quality | indoor environmental conditions suitable for                  |
|                              |                                                               |
|                              | building content preservation indoor environmental conditions |
|                              | suitable for                                                  |
|                              | building fabric preservation                                  |
|                              | Indoor environmental conditions                               |
|                              | suitable for                                                  |
|                              | achieving good occupant comfort                               |
|                              | levels                                                        |

|                       | emission of other harmful substances    |  |
|-----------------------|-----------------------------------------|--|
| Impact on the outdoor | greenhouse gas emissions from           |  |
| environment           | measures                                |  |
|                       | implemented and operation               |  |
|                       | emission of other harmful substances    |  |
|                       | natural resources use                   |  |
| Aspects of use        | influence on the use and the users of   |  |
|                       | the                                     |  |
|                       | building                                |  |
|                       | consequences of change of use           |  |
|                       | consequences of adding new technical    |  |
|                       | room                                    |  |
|                       | ability of building users to manage and |  |
|                       | operate control systems                 |  |

# Table 2 assessment scale

| Assess-  | Assess   | Suggested       | High | Low  | neutral | Low  | High    | Owners   | Time     |
|----------|----------|-----------------|------|------|---------|------|---------|----------|----------|
| ment     | -        | performan       | risk | risk |         | ben  | benefit | decision | plan     |
| category | ment     | ce              |      |      |         | efit |         | for      | for      |
|          | criteria | improvem        |      |      |         |      |         | investm  | implem   |
|          |          | ent<br>measures |      |      |         |      |         | ents     | entation |
|          |          | Illeasules      |      |      |         |      |         | Yes/No   |          |
|          |          |                 |      |      |         |      |         |          |          |

#### Appendix B

#### Part 1: Background information – Questionaire

- 1. How long have you worked in this building?
  - 6 to 12 months
  - 1 to 3 years
  - 4 to 5 years
  - 6 to 10 years
  - More than 10 years
- 2. State your year of birth. ( avoided of date of birth) Respondent could answer in figure/text form.
- 3. How is your workplace?
  - Seperate office room.
  - Share office room with other colleague.
  - Open office space
  - Other not mentioned above
- 4. On which floor in the building do you have you workspace?
  - Basement
  - Entre floor
  - first floor
  - Second floor
  - Attic or top floor
- 5. Has your office being painted, or has your room received new wall paper or has flooring in your room replaced during the last five years?
  - Yes
  - No
  - Dont know.
- 6. Has your workplance any moisture or water leakages during the last five years?

| , <u> </u>    |     |    | C         |
|---------------|-----|----|-----------|
| Moisture      | Yes | No | dont know |
| Water leakage | Yes | No | dont know |

7. Do you have or have you had

| • | any form of asthma    | Yes | No |
|---|-----------------------|-----|----|
| • | Hay fewer             | Yes | No |
| • | Any form av eczema    | Yes | No |
| • | Is there any other    |     |    |
|   | Collegue who has or h | as  |    |
|   | allergies etc.        | Yes | No |

8. Did you have under the previous period of three months have any of the following symptoms or ailments

| Tiredness     | Yes, often<br>(every<br>week) | Yes,<br>sometimes | No, Never | If yes, do you think some factors are |
|---------------|-------------------------------|-------------------|-----------|---------------------------------------|
|               |                               |                   |           | related to your                       |
|               |                               |                   |           | work                                  |
|               |                               |                   |           | environment                           |
| Headache      |                               |                   |           |                                       |
| Itching, pain |                               |                   |           |                                       |
| or eye        |                               |                   |           |                                       |
| irritation    |                               |                   |           |                                       |
| Irritation or |                               |                   |           |                                       |
| running nose  |                               |                   |           |                                       |
| Dry throat    |                               |                   |           |                                       |
| coughing      |                               |                   |           |                                       |
| Dry or red    |                               |                   |           |                                       |
| skin on the   |                               |                   |           |                                       |
| face          |                               |                   |           |                                       |

Part 2: Indoor work environment

Related to Heating and room temperature

9. How do you feel about temperature/heating at your work place?

|               | Very good | Good | Acceptable | Bad | Very bad |
|---------------|-----------|------|------------|-----|----------|
| During winter |           |      |            |     |          |
| During spring |           |      |            |     |          |
| During Summer |           |      |            |     |          |
| During autumn |           |      |            |     |          |

- 10. Do you have options to control temperature/heating at your workplace?
  - Yes, I can.
  - Reasonable controls exist
  - No options to influence.
- 11. Do you experience draught and cold air flow in your workplace?
  - Very much
  - Little
  - Dont know
  - Not at all
- 12. If you are affected of low pressure and cold air flow please specify where, you may select more than one option
  - at floor level
  - at window level
  - at door
  - at leakages at window or external walls.
  - At ventilation systems air inflow paths

|       |      | 1     |
|-------|------|-------|
| A 110 | 0110 | late) |
| Air   | uua  | HILV  |
|       |      |       |

- 13. What is your feeling about air quality at your work place?
  - Very good
  - Good
  - Acceptable
  - Bad
  - Very bad

14. Do you have any of the following problems at your work place

|                     | Yes, often | Yes ,sometimes | No, Never |
|---------------------|------------|----------------|-----------|
| Pungent smell       |            |                |           |
| Mold smell          |            |                |           |
| Trapped smell       |            |                |           |
| Stale smell         |            |                |           |
| Drainage foul smell |            |                |           |
| rotten smell        |            |                |           |
| Exhaust gas smell   |            |                |           |
| Food waste smell    |            |                |           |
| Dry air             |            |                |           |

- 15. Can you control ventilation at your workplace?
  - Yes, I can.
  - Reasonable controls exist
  - No options to influence.

#### Sound level and Illumination

16. Are you disturbed by unnecessary sound at your workplace?

|                    | Yes, often | Yes, sometimes | No, rarely |
|--------------------|------------|----------------|------------|
| Ventilation        |            |                |            |
| Other equipments   |            |                |            |
| like washing       |            |                |            |
| machines, lift etc |            |                |            |
| Sound from         |            |                |            |
| vehicle taffic or  |            |                |            |
| people outside the |            |                |            |
| building           |            |                |            |
| Pipes              |            |                |            |

- 17. What do you feel about sound levels or noise at your workplace?
  - Very quiet
  - Quiet
  - Dont know, would like to know the measured results
  - Significant sound levels
  - High sound levels
- 18. How is the availability of dayligt at your workplace?
  - Very good
  - good

- Dark
- Very dark
- 19. Are you satisfied or dissatiisfied with the inhouse climate as your work place?
  - Very satisfied
  - Satisfied.
  - Acceptable
  - Neither satisfied or dissatisfied
  - Not satisfied
  - Very dissatisfied
- 20. Do you have any suggestions for improving energy utilization at your workplace?
  - efficient energy use
  - reduce pollution.
  - Preserve the historical value of the building.
  - Change to renewable energy sources

#### Appendix C

Swedish standard SS EN 16883:2017 Conservation of cultural heritage – Guidelines for improving the energy performance of historic buildings.

# SVENSK STANDARD SS-EN 16883:2017



Fastställd/Approved: 2017-06-12 Publicerad/Published: 2017-06-20 Utgåva/Edition: 1 Språk/Language: engelska/English ICS: 91.120.10; 97.195

Bevarande av kulturarv – Riktlinjer för förbättring av energiprestandan i historiska byggnader

Conservation of cultural heritage – Guidelines for improving the energy performance of historic buildings

#### Appendix D

Energy declaration for Skulptörvägen 8, Johanneshov

Åtgärdsförslag som förbättrar byggnadens

energiprestanda har lämnats.

Energideklaration för Skulptörvägen 8, Johanneshov

Detta hus använder 293 kWh/m² och år, varav el 17 kWh/m². Liknande hus 130 − 195 kWh/m² och år, nya hus 80 kWh/m². Radonmätning är inte utförd. Ventilationskontrollen är utan anmärkning. Detaljinformation finns hos byggnadsägaren. Se även: www.boverket.se/energideklaration Energideklaration utförd 2012-11-29 av: Jenny Svahn , Independia Energi AB



# Appendix E

# OVK report

2017-12-15

|                                                    |                           |                                |                       | Referens nr: Skulptörvägen 8 |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |           |     |
|----------------------------------------------------|---------------------------|--------------------------------|-----------------------|------------------------------|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------|-----|
| Besiktni<br>Funktionskontroll a<br>BFS 2011:16 OVK | ings                      | protoko                        | II                    | Plats för stämpel            | Box 50<br>141 05                    | VENTMI<br>18<br>Kungens<br>08-88 74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Kurva    |           |     |
| A1 - Byggnad<br>Fastighetsbeteckning               |                           |                                |                       | Byggnadens adress            | 3                                   | Postnr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Ort      |           |     |
| Bysten 1                                           |                           |                                | Skulptörväge          | n 8                          | 121 43                              | Johanneshov                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |           |     |
| Byggnadsägaren                                     |                           |                                | Postadress            |                              | Postnr                              | Ort                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |           |     |
| Specialboende i Stockholm AB                       |                           |                                | BOX 3122              |                              | 169 03                              | Solna                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |           |     |
| Faktureringsadress                                 |                           |                                | Postadress            |                              | Postnr                              | Ort                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |           |     |
| Specialboende i Stockholm AB                       |                           |                                | BOX 3122              |                              | 169 03                              | Solna                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |           |     |
| Fastighetsansvarig/Fö                              | rvaltare                  |                                |                       |                              | Telefonnr                           | Fax / e-post                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | •        |           |     |
| Internt byggnadsnamn                               |                           | Internt byggnadsnr             |                       | Verksamhet                   |                                     | BRA i m²                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Ant. Lgh | Ant. loka | ler |
| Specilaboende                                      |                           | 1                              |                       | Psykiatri                    |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 1         |     |
| A2 - Besiktning                                    | gsutlåta                  | nde (+ sammar                  | nställning a          | v system inom                | byggnaden)                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | •         |     |
| Systemnr                                           | Bes.kat.                  | Besiktningsdatum               | Besiktnings resultat  | Ombesiktning datum           | Nästa ordinarie<br>besiktningsdatum | Bilaga<br>(B-sida)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ١        | lotering  |     |
| the second second second second                    | the state of the state of | CHARLEST CONTRACTOR CONTRACTOR | the state of the last |                              |                                     | The state of the s |          |           |     |

2020-12-15

B1

G

| VC<br>Förrum<br>Rum | 100                                        | 100                                                           |                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 20                                                                                                                                                                                                                                                                                                                                                    | 100                                                                                                                                                                                                                                                                                                                                                                                                                     | В3                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                           |
|---------------------|--------------------------------------------|---------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| Rum                 | 100                                        | 100                                                           |                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                           |
|                     | 100                                        | 100                                                           |                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 60                                                                                                                                                                                                                                                                                                                                                    | 100                                                                                                                                                                                                                                                                                                                                                                                                                     | В3                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                           |
| Rum                 |                                            | 100                                                           | 100                                                                                                                                                                                                                                                        | В3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                           |
| Rum                 |                                            | 10                                                            |                                                                                                                                                                                                                                                            | В3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                           |
|                     | 40                                         | 40                                                            | 100                                                                                                                                                                                                                                                        | ВЗ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                           |
| örrum               |                                            |                                                               |                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 59                                                                                                                                                                                                                                                                                                                                                    | 98                                                                                                                                                                                                                                                                                                                                                                                                                      | В3                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                           |
| NC                  |                                            |                                                               |                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 20                                                                                                                                                                                                                                                                                                                                                    | 100                                                                                                                                                                                                                                                                                                                                                                                                                     | В3                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                           |
| <b>K</b> ök         |                                            |                                                               |                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 60                                                                                                                                                                                                                                                                                                                                                    | 100                                                                                                                                                                                                                                                                                                                                                                                                                     | В3                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                           |
| Café                | 80                                         | 78                                                            | 98                                                                                                                                                                                                                                                         | ВЗ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                           |
| Reception           | 40                                         | 40                                                            | 100                                                                                                                                                                                                                                                        | В3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                           |
| VC                  |                                            |                                                               |                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 20                                                                                                                                                                                                                                                                                                                                                    | 100                                                                                                                                                                                                                                                                                                                                                                                                                     | B3                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                           |
| örrum               |                                            |                                                               |                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 60                                                                                                                                                                                                                                                                                                                                                    | 100                                                                                                                                                                                                                                                                                                                                                                                                                     | В3                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                           |
| Projektledning      | 80                                         | 80                                                            | 100                                                                                                                                                                                                                                                        | В3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                           |
| Rum                 | 20                                         | 20                                                            | 100                                                                                                                                                                                                                                                        | ВЗ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                           |
| Förrum              |                                            |                                                               |                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 60                                                                                                                                                                                                                                                                                                                                                    | 100                                                                                                                                                                                                                                                                                                                                                                                                                     | В3                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                           |
| Contor              |                                            |                                                               |                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 45                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                         | В3                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                           |
| X C R R R           | ök afé eception //C örrum rojektledning um | ök afé 80 eception 40  //C örrum rojektledning 80 um 20 örrum | ök         80         78           afé         80         78           eception         40         40           //C         örrum         ojektledning         80         80           um         20         20         ojektledning         80         80 | ök         80         78         98           eception         40         40         100           /C         örrum         70         70         70         70           örrum         20         20         100         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70 | ök         80         78         98         B3           eception         40         40         100         B3           //C         örrum         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70 | ök         60           afé         80         78         98         B3           eception         40         40         100         B3           //C         20           örrum         60           rojektledning         80         80         100         B3           um         20         20         100         B3           örrum         60 | ök         60         60           afé         80         78         98         B3           ecception         40         40         100         B3           /C         20         20         20           örrum         60         60         60           rojektledning         80         80         100         B3           um         20         20         100         B3           örrum         60         60 | ök         60         60         100           afé         80         78         98         B3           ecception         40         40         100         B3           /C         20         20         100           örrum         60         60         100           rojektledning         80         80         100         B3           um         20         20         100         B3           örrum         60         60         100 | ök         60         60         100         B3           afé         80         78         98         B3 |