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Abstract: Building databases are important assets when estimating and planning for national energy
savings from energy retrofitting. However, databases often lack information on building characteristics
needed to determine the feasibility of specific energy conservation measures. In this paper, machine
learning methods are used to enrich the Swedish database of Energy Performance Certificates with
building characteristics relevant for a chosen set of energy retrofitting packages. The study is limited
to the Swedish multifamily building stock constructed between 1945 and 1975, as these buildings are
facing refurbishment needs that advantageously can be combined with energy retrofitting. In total,
514 ocular observations were conducted in Google Street View of two building characteristics that
were needed to determine the feasibility of the chosen energy retrofitting packages: (i) building type
and (ii) suitability for additional façade insulation. Results showed that these building characteristics
could be predicted with an accuracy of 88.9% and 72.5% respectively. It could be concluded that
machine learning methods show promising potential to enrich building databases with building
characteristics relevant for energy retrofitting, which in turn can improve estimations of national
energy savings potential.

Keywords: building database enrichment; machine learning; artificial intelligence; Google Street
View; energy performance certificate; support vector machine; energy retrofitting; energy transition;
building-specific information; long-term renovation strategy

1. Introduction

Energy used in buildings accounts for 40% of the total energy use in the European Union (EU) [1]
and improving the energy efficiency of buildings is thus an important undertaking in the EU’s energy
transition. It has been widely argued that an increased refurbishment rate is needed in order to intensify
the rate of energy efficiency in the building stock [2], and it is thus favourable to prioritise energy
conservation measures in buildings that, due to technical deficiencies, must be refurbished either way.
To precipitate this process, the EU requires all member states to have a long-term renovation strategy
with focus on energy efficiency in order to comply with directive 2018/844 on the energy performance
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of buildings [3]. One of the main objectives of the long-term renovation strategy is to facilitate the
transformation of existing buildings into nearly zero-energy buildings [3].

In Sweden, a significant part of the multifamily building stock was constructed between 1945
and 1975 [4], and many of these buildings are today facing significant needs for refurbishment [5].
Consequently, there is a window of opportunity to incorporate energy conservation measures in the
refurbishment of this part of the multifamily building stock [6]. One advantage with doing so is that
the rapid construction of new buildings between 1945 and 1975 was partly facilitated by standardised
building methods and building types, which now allows for standardised methods for refurbishment
and energy conservation measures for these different building types [7]. By utilising knowledge on
what energy conservation measures are suitable for the different building types, energy retrofits can be
tailored for each individual building in the stock 1945–1975. This in turn makes it possible to generate
more accurate estimations of the national energy savings potential in the multifamily building stock
and the associated costs, which is important information for the long-term renovation strategy.

However, in order to successfully estimate the energy savings potential, detailed information
about this part of the multifamily building stock is required. Today, building-specific data about the
multifamily building stock 1945–1975 is available through the energy performance certificates (EPCs),
which cover more than 90% of all multifamily buildings in Sweden [8], but the information of building
characteristics in the EPCs is limited.

One data source that could complement the EPCs with lacking building-specific information is
Google Street View, which provides 360-degree panorama imagery of streets and their surroundings,
with a high coverage of both urban and rural areas across the globe [9]. Google Street View is used to
collect information in many scientific disciplines [10–13]. As building address is provided in Swedish
EPCs, it is possible to search for and visually collect building-specific data of characteristics such as
building type, façade material, and eaves shape from Google Street View.

To facilitate such data collection, machine learning (ML) methods can be used. A broad body
of research has explored ML applications in the field of building research [14]. Many studies use
ML to predict energy use [15–17], to conduct occupant sensing [18], and for various applications in
smart buildings [19]. Studies have also explored ML applications concerning building retrofitting
potential. Re Cecconi et al. [20] used artificial neural networks and geographic information software to
cluster school buildings in northern Italy and define appropriate retrofit scenarios for the homogeneous
clusters. Similarly, Marasco and Kontokosta [21] used energy audit data from New York City and
ML classification to identify eligible energy conservation measures based on buildings’ technical
characteristics. Closer to the aim of this paper, other studies have focused on using ML to enrich
building databases with various building characteristics [22–28], and Google Street View has been
used to collect data in some of these studies. For example, Zeppelzauer et al. [29] and Li et al. [30] used
artificial neural networks for image feature extraction to estimate building age from Google Street View,
and Doersch et al. [31] as well as Lee et al. [32] used Google Street View to estimate architectural epochs.

However, studies utilising Google Street View and ML for predictions of building-specific
suitability for specific energy conservation measures remain a rather unexplored area of research.
More so, as most studies use artificial neural networks and image recognition, there is limited knowledge
on the benefits of expert influence in the generation of ML models outside the sphere of deep learning.
The contribution of this study is thus to investigate the prospects for such methods by utilising a limited
number of expert observations in Google Street View and more transparent ML methods to enrich
EPC data for the Swedish multifamily building stock 1945–1975. By predicting unknown building
characteristics relevant for energy retrofitting on this part of the multifamily building stock, suitable
combinations of energy conservation measures can be tailored to each specific building based on the
building type and other hitherto unknown characteristics. Refining methods for such analyses has the
potential to enable unparalleled national estimations and strategies for improved energy efficiency
in the multifamily building stock 1945–1975, which can be of advantage in the national long-term
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renovation strategy. This paper summarises and adds to work conducted to support the Swedish
long-term renovation strategy and the master thesis project conducted by Karlsson and Jörgensson [33].

2. Materials

In this section, the materials used in this paper are described. First, characteristics of the
Swedish multifamily building stock 1945–1975 are presented. Second, the EPC data, which acts as the
representation of the building stock in the analyses, are described. Third, tailored energy retrofitting
packages that are used as cases in this study are presented. These energy retrofitting packages will
determine which building characteristics that need to be predicted in order to assess the feasibility of
each energy retrofitting package for each individual multifamily building 1945–1975. Finally, Google
Street View is briefly described, which is where the new building characteristics are collected.

2.1. The Swedish Multifamily Building Stock from 1945–1975

At the beginning of the 20th century, Sweden had among the poorest housing standards in
Europe [34]. As a remedy, construction of new buildings of high quality was initiated by the
government in the 1940s with the aim to provide adequate housing for all [34]. This was the start of
three decades of extensive and standardised construction of new buildings in Sweden. The construction
peaked between 1965–1975 when more than 100,000 dwellings, apartments as well as single-family
houses, were built per year due to a government decision in 1964 to build one million dwellings in
ten years, the so called Million Homes Programme [4]. To date, the high rate of construction during
the Million Homes Programme remains unparalleled in Sweden. The effort put into construction of
new buildings from the government ultimately contributed to a high housing standard in Sweden that
today is one of the best across Europe. However, buildings from this period are now facing increasing
needs for refurbishment and improvements in energy efficiency [5]. The EPC ratings of the multifamily
building stock 1945–1975 can be seen in Figure 1, which shows that the majority of the buildings have
an EPC rating of E or F.
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Figure 1. Share of the multifamily building stock 1945–1975 in each EPC rating A–G.

Due to the high intensity of standardised construction, recurring patterns and properties can be
found in buildings built between 1945 and 1975. The main sectioning of multifamily buildings from
this period is based on the appearance and the size of the building, where three main building types
are usually considered: slab blocks, panel blocks, and tower blocks [35]. Representative images of
these building types can be seen in Figure 2a–d.

Slab blocks. The vast majority of multifamily buildings built between 1945 and 1975 belonged to
the category slab blocks. Slab blocks are rectangular, detached buildings often found in smaller groups
and with 3 storeys, but can vary between 2 and 4 storeys. Most often, slab blocks have 2 or 3 stairwells,
and a building depth of 10–11 m. Slab blocks were slightly differently built before and after 1960 [35].
Representative slab blocks 1945–1960 and 1960–1975 can be seen in Figure 2a,b respectively.

Panel blocks. Towards the end of the period 1945–1975, panel blocks were built on the outskirts
of urban areas. Panel blocks are long, rectangular multifamily buildings with more storeys than
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slab blocks. They are usually found in parallel formations and often have 2 or 3 stairwells [35].
A representative panel block can be seen in Figure 2c.

Tower blocks. Tower blocks are square-shaped multifamily buildings with one stairwell in the
middle. During the 1940s, tower blocks were usually built with 3–8 storeys, but during the 1950s and
1960s they were built with 8–11 storeys. Tower blocks are usually found in groups [35]. A representative
tower block can be seen in Figure 2d.
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Figure 2. Representative building types 1945–1975: (a) slab block from 1945–1960; (b) slab block from
1960–1975; (c) panel block and (d) tower block.

2.2. Data from Energy Performance Certificates

In Sweden, EPCs constitute the most comprehensive national register of energy-related
building-specific data for the multifamily building stock [36]. At the end of 2008, all Swedish
multifamily buildings had to have a registered EPC [37]. Consequently, the coverage of the multifamily
building stock is high, with over 90% of all multifamily buildings having a registered EPC [8]. Although
critique has been directed towards the data quality in Swedish EPCs [38–41], one advantage over
the EPCs of other EU member states is that values for building energy use are measured in Sweden,
as opposed to calculating energy use which is the most common approach across the EU [42].

In Sweden, the Board of Housing, Building and Planning are responsible for monitoring the
EPCs. EPCs are collected in their database Gripen which offers public access to limited EPC data, but
researchers can access full EPC records via special snapshots from the database that are downloaded
every six months.

In this paper, a GRIPEN snapshot from 1st of July 2015 is used. The snapshot contains
approximately 130,000 unique EPCs out of which approximately 50,000 are from the period 1945–1975.
The EPC data have previously been enriched with data from the Swedish Land Survey according to
methods described by Johansson et al. [8]. Table 1 provides an overview of the enriched data as well as
the EPC data.
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Table 1. An overview of the available data in Swedish EPCs as described by Mangold et al. [43].

Data Source Value Category Data Specification Measurement Type

Previously
enriched data

Data from the Swedish
Land Survey Coordinates Scale variable (m2)

Year of re-construction Scale variable (year)
Value year Scale variable (year)

EPC data Matching, keys, and
sorting National real estate number and index -

Address, area code, post code -
EPC index -

Building characteristics Year of construction 1 Scale variable (year)
Complexity 1 Binary (complex, non-complex)

Shared walls with other buildings 1 Ordinal (detached, semi-attached,
attached)

Recognition of heritage value Binary (heritage value, no heritage
value)

Number of storeys Ordinal
Number of stairwells Ordinal

Number of apartments Ordinal
Number of floors below ground Ordinal

Building usage National registration of building usage
type code Nominal

Detailed usage of building 1 Share (% area] of building used for
the 12 most common usages

Building area Interior areas1 Scale variable (m2)
Heated garage area Scale variable (m2)

Heating Energy use for heating divided in 13
energy sources 1 Scale variable (kWh/year)

Tic box for how energy use is measured Binary (measured, distributed)
Period of energy use measurement Interval (year and month)

Household electricity
and water Energy use for cooling 1 Scale variable (kWh/year) and

nominal (measured, distributed)

Energy use for tap water 1 Scale variable (kWh/year) and
nominal (measured, distributed)

Electricity use divided in domestic,
shared, and non-domestic use 1

Scale variable (kWh/year) and
nominal (measured, distributed)

Ventilation Type of ventilation system 1

Nominal (exhaust, balanced,
balanced with heat exchanger,

exhaust with heat pump, natural
ventilation)

Tic box for conducted/not conducted
ventilation control 1 Nominal (yes, no, partially)

Recommended energy
conservation measures

Tic box for 28 common energy
conservation measures Nominal

Estimated energy savings 1 Scale variable (kWh/year)
Estimated cost per saved kWh 1 Scale variable (SEK/kWh)

1 Required by the EU.

2.3. Case: Tailored Energy Retrofitting Packages

For this study, a reference with tailored energy retrofitting packages for the Swedish multifamily
building stock 1945–1975 have been used (see Reference [44]). These energy retrofitting packages will
be used to exemplify how building database enrichment can enable more accurate national estimations
of energy savings and costs, as a certain number of building characteristics are needed in order to
allocate appropriate energy retrofitting packages to buildings. For each building type described in
Section 2.1, there are three available packages (1–3) which entail different costs and energy savings (low
to high). The packages must be applied in successive order, meaning that Package 2 requires Package 1
to have been conducted, and Package 3 requires both Package 1 and Package 2 to have been conducted.

• In Package 1, a number of measures that aim at optimising the operation of the building are
undertaken [44]. Apart from building type, no building characteristics must be known in order to
determine the feasibility of the measures in Package 1.
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• In Package 2, components such as pumps and fans are changed to more effective counterparts,
and additional insulation is added in the attic and to existing windows [44]. As for Package 1,
building type is the only characteristic that needs to be known in order to determine the feasibility
of the measures in Package 2.

• Package 3 contains the most extensive measures, including a new ventilation system with heat
exchange from exhaust air, a change of windows, and 10 cm additional insulation on the building
envelope [44]. To determine the feasibility of Package 3, two building characteristics apart
from building type are of advantage to know. The first characteristic is the façade material;
more specifically, it is of advantage to know whether the building has a brick façade or not, as brick
facades often must be preserved due to cultural and historical values. Additional insulation on a
brick façade is thus not always a feasible option. More so, the shape of the roof and length of the
eaves determines whether there is room for additional façade insulation or not, and additional
façade insulation on buildings with an existing eaves overhang thus involves less extensive
inventions than when the existing roof must be adjusted to a thicker façade. Consequently,
eaves overhang is a necessary building characteristic to know to determine the feasibility of
Package 3.

The energy savings and the associated costs for each of the energy retrofitting packages can
be seen in Tables 2 and 3 respectively. The costs in Table 3 are marginal costs for carrying out
the energy conservation measures in each energy retrofitting package in conjunction with planned
refurbishment, meaning that the costs are in most cases lower than what they would have been if
the energy retrofitting packages were carried out independent of other refurbishment. A detailed
list of the energy conservation measures in each of the energy retrofitting packages can be seen in
Table A1 in the Appendix A. It should be noted that slab blocks have been divided into two categories
based on their construction year, as they were constructed differently during 1945–1960 compared to
1960–1975, as mentioned in Section 2.1. Finally, the energy savings and costs in Tables 2 and 3 have
been slightly altered from the reference [44] as the reference contained more detailed differentiation
between building types than was considered necessary for this study.

Table 2. Percental energy savings for each building type and energy retrofitting package according to
the reference study [44].

Building Type Package 1 (%) Package 2 (%) Package 3 (%)

Slab block, 1945–1960 14.2 25.2 63.8
Slab block, 1960–1975 9.7 25.6 59.1

Tower block 17.6 25.4 63.6
Panel block 8.5 23.7 54.6

Table 3. Marginal costs for each building type and energy retrofitting package according to the reference
study [44].

Building Type Package 1 (€/m2) Package 2 (€/m2) Package 3 (€/m2)

Slab block, 1945–1960 6.0 115 398
Slab block, 1960–1975 5.1 147 426

Tower block 3.9 112 435
Panel block 2.5 120 437

2.4. Google Street View

Google Street View is a technology developed from what was initially called the Stanford
CityBlocks Project and started as a collaboration between Google and Stanford University [9]. The aim
was to utilise the massive amount of information in street-level imagery to “organize the world’s
information and make it universally accessible and useful” [9]. Since 2007, Google Street View is
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featured in Google Maps and Google Earth and allows users to visually interact with streets (and
an increasing amount of off-road sites as well) across the globe that have been captured in Google’s
360-degree panoramic imagery.

Today, Google Street View is widely used for research purposes, and a search for the technology
in Google Scholar search engine generates close to 20,000 hits (January 2020). It is used for
collection of information in fields such as urban forestry [10,45], health research [11], and pedestrian
behaviour [12,13], to name a few.

Limitations of making observations in Google Street View include limited coverage of certain areas
(especially rural areas) as well as a limitation of observations to morphological building characteristics
that are apparent to an external observer.

3. Methods

In this section, the methods of collecting data, developing ML models, and applying these
algorithms on the entire multifamily building stock 1945–1975 are described.

3.1. Observations in Google Street View

Ocular observations in Google Street View were conducted for 476 EPCs that were sampled from
the total of 50,000 EPCs 1945–1975. The sampling was performed as weighted random sampling,
where the probability of each EPC being selected was determined by the area of the building the EPC
represented. The reason for the weighted random sampling was to gain a sample that was representative
of the building stock in respect to area rather than in respect to the individual EPCs. However, due to a
low representation of certain building types (tower blocks) in the sampled data, observations were
conducted for another 41 manually selected EPCs, resulting in a total of 517 observations. The manual
selection of complementing EPCs was based on number of storeys, as tower blocks usually are higher
than slab blocks.

For the sample of 517 EPCs, observations were conducted in Google Street View using the
registered address in the EPC. Observations were conducted by all of the authors, and methods to
ensure that observations were conducted uniformly were undertaken. The quality of the observations
was ensured by first letting all authors make observations guided by a senior researcher. After
that, a control matrix of 13 observations was constructed to ensure that all authors’ classifications
agreed. After corrections, authors conducted observations individually. Any ambiguous cases were
discussed with a senior researcher before classification, or rejection as valid observation. In three
cases, observations were not possible due to lack of coverage in Google Street View. These EPCs
were thus removed which resulted in a total of 514 observations. This was considered a sufficient
number of observations as iterative testing of ML models starting at 200 observations showed no
significant improvement in accuracy after 400 observations. The building characteristics and the
respective classes that were observed are listed in Table 4. The choice of which building characteristics
to observe was based on the gap between available data in the EPCs and data needed in order to assess
the feasibility of energy retrofitting packages from the case presented in Section 2.3. It was found
that the characteristics building type, whether or not the building has a brick façade, and whether or
not the building has eaves overhang were needed. As seen in Table 4, rowhouses are included as a
building type to be observed despite them not being introduced in Section 2.1. Rowhouses are not
multifamily buildings per se, but the way they are owned determine whether their EPCs end up in the
category for multifamily buildings or not. Rowhouses that are owned in similar ways as multifamily
buildings (rental housing, resident-cooperatives) are classified as multifamily buildings in the EPC
database, and they will thus be necessary to identify when using the EPCs to study the multifamily
buildings 1945–1975. They will however be excluded from analyses of the energy savings potential in
the multifamily building stock 1945–1975.
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Table 4. Building characteristics that were observed in Google Street View and their respective
measurement type.

Building Characteristic Measurement Type and Classes

Building type Nominal [slab block, panel block, tower block, rowhouse, other]
Façade material Binary [brick, not brick]
Eaves overhang Binary [overhang, no overhang]

Figure 3 shows an example of an observation of a building with eaves overhang and brick façade
and a break-down of the classifications in the 514 observations is shown in Table 5. It should be noted
that part of the methods development included dropping several observed building characteristics
due to difficulties in assuring data quality; the observations presented in this paper are features for
which we could reach a satisfactory data quality.
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Figure 3. Example of observation in Google Street View of a building with eaves overhang and without
brick façade, i.e., a building that is suitable for additional façade insulation.

Table 5. A specification of the classifications of the 514 observations conducted in Google Street View.

Observed Building Characteristic Number of Observations Share of Observations

Building type

Slab block 342 63.0%
Panel block 81 15.8%
Tower block 36 7.00%
Rowhouse 32 6.23%

Other 23 4.47%

Total 514 100%

Not brick façade 297 57.8%
Eaves overhang 215 41.8%

Eaves overhang and not brick façade 117 22.8%

Finally, the geographical distribution of the 514 observations is shown in Figure 4. The light
dots in the map show all multifamily buildings constructed between 1945 and 1975, whereas the
black crosses mark the multifamily buildings that were observed in Google Street View. It can be
seen that the studied multifamily building stock is distributed all across Sweden in a way that reflects
the population density of the country. The observations show a similar pattern, indicating that they
constitute a geographically representative sample.
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3.2. Selection of Possible Features

After the observations had been conducted, the features that should be considered in the
development of prediction models were chosen with a two-step approach: (i) relevant features were
highlighted by research experts, (ii) the features from step (i) was validated with stepwise regression
which is an automatic feature selection methodology. The stepwise regression was thus mainly used to
confirm features pointed out by domain experts, although it also contributed with a few additional
features. When appropriate, new features were generated as ratios of two or more of the available
features to better differentiate between building characteristics. The features selected to proceed with
for each building characteristic to be predicted are shown in Table 6. As an example, for the prediction
of building type, characteristics of the building types described in Section 2.1 along with research
expertise were used to find appropriate features. It was found that number of storeys and year of
construction were suitable features to separate building types from one another, as can be seen in
Figure 5. Before the application of features in ML models, all numerical features were normalised
with minmax.

Table 6. The selected features (from available EPC data) to consider for the prediction of each
building characteristic.

Building
Characteristic

Selected Possible Features
from Stepwise Regression Feature Type Unit Numerical Feature

Representation

Building type Number of stories Raw feature - (1–15)
Construction year Raw feature Year (1945–1975)

Heated space per story and
address Derived feature m2 (681–70,110)

Number of stairwells per EPC Raw feature - (0–82)
Number of apartments per

address Derived feature - (1–189)

Façade material Building type 1 Derived feature -
Slab block (1), panel

block (2), tower block
(3), other (4)

Position longitude Raw feature m2 (6,134,178.3–7,537,187)
Position latitude Raw feature m2 (279,176.1–916,455.9)

Area code Raw feature - (1–25)
Post code Raw feature - (11,111–98,492)

EPCs per property Derived feature - (1–132)

Eaves overhang Building type 1 Derived feature -
Slab block (1), panel

block (2), tower block
(3), other (4)

Construction year Raw feature Year (1945–1975)
Number of stories Raw feature - (1–15)
Position longitude Raw feature m2 (6,134,178.3–7,537,187)

Energy performance Raw feature kWh/m2 (21–482)
Number of stairwells per

apartment Derived feature - (0–6.5)

Post code Raw feature - (11,111–98,492)
1 It should be noted that a predicted building characteristic (building type) was used as a feature in the prediction of
the other building characteristics (eaves overhang and façade material).
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Figure 5. Visualisation of how construction year (x) and number of stories (y) correlate with building
type. It can be seen that building types tend to form clusters, indicating that the x and y variables
together succeed to differentiate between building types. It should be noted that one point in the figure
sometimes corresponds to several identical observations, which explains why the total number of
points is lower than 514.

3.3. Training and Testing of Algorithms

Three types of supervised ML models for classification problems are considered in the search of
the optimal model. In supervised learning, the ML models are trained on labelled training data which
provides instant feedback on whether a prediction is correct or not. Consequently, the ML models go
through an iterative self-learning process to refine their respective algorithms. These models have
different characteristic when it comes to the bias and variance trade-off. The model types that were
considered in this study were logistic regression (LR) and support vector machines (SVM). The objective
of logistic regression is to model the mean of a dependent variable with respect to a set of predictors.
Logistic regression uses a logistic function to model the binary dependent variables. The aim of
SVM is to find a hyperplane that separates the data point of the different classes. The optimal plane
maximizes the distance between the data points of the classes. The hyperplanes will become decision
boundaries that will be used for classifying new data observations. SVM can both handle linear and
non-linear classifiers.

LR has high bias and low variance, meanwhile SVM has low bias and high variance. To find the
best prediction model for the data, trade-offs must be made between model bias and model variance.
Model bias is the risk of oversimplifying the model, e.g., choosing a linear model when the data is
non-linear. Model variance is the risk of considering random noise in the training data, which could
reduce the capability of predicting new examples. Balance between bias and variance can be achieved
by choosing the most appropriate model type for the problem, together with proper regularizing of the
model parameters. The appropriate choice can only be made by testing a wide variety of models.

By testing numerous ML model structures with various features, the search space of the
optimal model increases. Note, the models can be further optimized with parameter tuning and
regularization [46].

The next step is to select the features and the ML model type that gives the highest prediction
accuracy. This is done with 10-fold cross-validation. Before cross-validation, the 514 observations are
randomly divided into training data (80%) and testing data (20%). In cross-validation, the training
data is randomly split into 10 training and test data sets. Then, in each iteration, models are trained
with data from 9 folds, and tested on the 10th fold. The process is repeated until all folds have acted as
test data. Finally, the resulting models are fitted with the training data, and an error rate is estimated
with the test data. Various combinations of feature selection, ML model types and parameter tunings
are tested.

Table 7 shows the four ML models that were considered for prediction of building type, which
constitutes a 5-class classification problem. Three main attributes of the ML models were considered in
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the choice of the optimal model: (i) a high overall accuracy in cross-validation with close proximity to
the accuracy on the testing data, (ii) a distribution of accuracy among the model classifications that
is suitable for the intended application of the ML model, and (iii) a low number of input features in
order to maintain a certain level of interpretability. With respect to these attributes, the model SVM1
was chosen. This model had (i) high accuracy in both cross-validation and on the testing data, with
only minor differences between the two, as well as (ii) high accuracy for slab blocks and panel blocks,
which both dominate over tower blocks and rowhouses in the multifamily building stock 1945–1975.
The distribution of accuracy among the classifications was thus considered appropriate for the intended
application. Finally, the model had (iii) a relatively low number of input features. For the choice of ML
model to predict suitability for additional façade insulation, which was a 2-class classification problem,
similar reasoning was conducted. The features and the test accuracy for the chosen ML models for
prediction of building type and suitability for additional façade insulation can be seen in Table 8.

Table 7. Details for four of the considered models for prediction of building type.

Model
Overall Accuracy (%) Specific Accuracy (%)

Cross-Validation Testing
Data

Slab
Blocks

Panel
Blocks

Tower
Blocks Rowhouses Other

SVM1 (Chosen
model) 88.5 88.9 95.2 94.4 71.4 85.7 0

SVM2 89.3 87.9 98.4 88.9 71.4 57.1 0
LR1 88.0 87.9 93.7 88.9 85.7 85.7 0
LR2 87.5 87.9 95.2 88.9 85.7 71.4 0

Table 8. The chosen prediction model and its accuracy for each of the predicted building characteristics.

Building Characteristic Features in Selected Model Machine Learning
Model Accuracy

Building type

Number of stories
Construction year

Heated space per story and address
Number of apartments per address

SVM 88.9

Eaves overhang + not
brick façade

Construction year
Number of apartments

Number of stairwells per apartment
Area code

SVM 72.5

It can be seen in Table 8 that building type can be predicted with an accuracy close to 90%.
Façade material and eaves overhang could both be predicted with an accuracy of approximately 68%,
but in combination, these characteristics could be predicted with an accuracy of 72.5%. The combined
model was thus chosen as the two building characteristics were to be used for the common cause of
determining buildings’ suitability for additional façade insulation.

Finally, the ML models were validated by observing a random sample of 20 EPCs in Google Street
View, for which building type and suitability for additional façade insulation had been predicted.
The validation showed an accuracy of 90.0% for building type, which is close to the obtained test
accuracy. For suitability for additional façade insulation, the validation showed an accuracy of 63.2%,
which is lower than the obtained test accuracy. The relatively small validation sample however makes
it difficult to draw major conclusions from these results.

4. Results

In this section, the distribution of the predicted characteristics of the multifamily building stock
1945–1975 are presented. The predicted characteristics are then used to estimate energy savings potential
in this part of the housing stock, using the energy retrofitting packages presented in Section 2.3.
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4.1. Energy Retrofitting Characteristics of the Multifamily Building Stock from 1945–1975

Based on the models shown in Table 8, building type and possibility for additional insulation
could be predicted for the entire multifamily building stock 1945–1975. The results of this prediction
can be seen in Figure 6 and Table 9. In Figure 6, the predicted distribution of the different building
types in the multifamily building stock 1960–1975 is presented with a model accuracy of 88.9%. First of
all, it can be seen that almost all of the multifamily buildings from this era can be categorised into one
of the four building types that were described in Section 2.1. Figure 6 shows that approximately 3%
of the buildings in the EPC database belong to the category “other” (rowhouses are included here),
and less than 2% of the buildings in the EPC database lacked sufficient information to be categorised at
all. Second of all, the results in Figure 6 confirm that slab blocks dominate among the multifamily
buildings 1945–1975, followed by panel blocks and tower blocks.
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Table 9. The predicted possibility for additional façade insulation (and thus for energy retrofitting
package 3 in the reference [44]) among the predicted building types and in the entire multifamily
building stock 1945–1975.

Building Type Eaves Overhang and Not Brick Façade [%]

Slab blocks, <1960 63.9
Slab blocks, 1960–1975 22.0

Panel blocks 6.81
Tower blocks 26.4

All building types in multifamily building stock 1945–1975 32.0

Table 9 shows the predicted distribution of multifamily buildings 1945–1975 with characteristics
favourable for additional façade insulation, i.e., buildings with eaves overhang and a façade material
that is not brick. With a model accuracy of 72.5%, it was predicted that 32.0% of all multifamily
buildings from this era have both of the favourable characteristics for additional façade insulation
which make them suitable for energy retrofitting package 3. Table 9 also shows how the suitability of
energy retrofitting package 3 is distributed among the different building types, based on the share
of buildings with eaves overhang and not brick façade. It can be seen that it is primarily slab blocks
constructed before 1960 that have favourable characteristics for additional façade insulation, followed
by tower blocks, slab blocks constructed between 1960 and 1975, and finally panel blocks. This type of
information provides knowledge regarding the feasibility of certain energy conservation measures on
specific building types, which can facilitate planning of energy retrofitting programmes and means for
allocation of resources.

These results provide new insight into the energy savings potential of this part of the building stock.
As can be seen in Table 2, energy savings above 50% are only possible with energy retrofitting package
3, as energy savings from energy retrofitting package 2 are only approximately 25%. Assuming that
there would be extensive requirements to preserve brick façades, and that issues of cost-effectiveness
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would restrict additional façade insulation to be added in the absence of a eaves overhang, the results
in Table 9 indicate that the energy savings potential for most of the buildings 1945–1975 would be
around 25% rather than the often assumed 50%. Although these are rough assumptions, the results in
Table 9 provide valuable insight in the potential trade-offs that could be faced between energy savings
and cultural preservation, as well as between energy savings and cost-effectiveness. Even more so,
these results showcase how building databases enriched with new building-specific information can
improve understanding and descriptions of the building stock.

4.2. Examples of National Strategies for Tailored Energy Retrofitting

This section will provide an example of how enriched building databases can be applied to
generate more accurate energy retrofitting strategies that can be used for policy purposes such as
in the long-term renovation strategy. Figure 7 showcases how building-specific information can be
used in decision trees for different energy retrofitting packages, based on the example described in
Section 2.3. In this decision tree, four building characteristics are used: renovation status, energy rating,
suitability for additional façade insulation, and building type. Renovation status and energy rating are
characteristics that were present in the building database before enrichment, whereas suitability for
additional façade insulation and building type are characteristics that were predicted in this study. It is
assumed that buildings with eaves overhang and without brick façade are suitable for additional façade
insulation. In other words, this example illustrates the energy savings potential assuming that there are
strict requirements for the preservation of brick facades, and that additional façade insulation is only
relevant to buildings with an already existing eaves overhang due to limitations in retrofitting costs.

The example in Figure 7 is based on the notions that (i) energy retrofitting should be carried out
along with other planned refurbishment measures, i.e., in a “window of opportunity”, and (ii) that the
overall objective is to transform existing buildings into nearly zero-energy buildings, in accordance
with the objective of the long-term renovation strategy [3]. In Sweden, nearly zero-energy buildings
are defined as buildings with an EPC rating between A–C [47]. Based on these notions, it can be seen in
Figure 7 that recently renovated buildings, i.e., cases where the window of opportunity has been missed,
are excluded from energy retrofitting. Likewise, buildings that already fulfil the requirements of nearly
zero-energy buildings (EPC rating A–C) are also excluded from energy retrofitting. Buildings that
have not been recently renovated and with the EPC rating D (i.e., buildings close to nearly zero-energy
building standard) are allocated energy retrofitting package 1. Finally, buildings that have not been
recently renovated and with an EPC rating between E–G are allocated energy retrofitting package 2 or
3 depending on their suitability for additional façade insulation, which is part of energy retrofitting
package 3.

Based on the decision tree in Figure 7 and the energy savings presented in the reference case in
Table 2, the yearly national energy savings potential and the associated costs were estimated for two
scenarios. The results can be seen in Figure 8a,b and in Figure 9a,b. In Figure 8a,b, it is assumed that
only buildings that are suitable for additional façade insulation (eaves overhang and not brick façade)
are allocated Package 3. This assumption represents a conservative approach where all brick facades
are preserved. In Figure 9a,b, it is assumed that 50% of buildings that are not considered suitable for
additional façade insulation are allocated Package 3 regardless of their unsuitability. This assumption
represents a more realistic case with increased compromise between historical preservation and energy
savings. The figures are based on the assumption that buildings are refurbished and energy retrofitted
when they reach their expected service life of 50 years. The expected service life has been adjusted based
on previous refurbishments according to methods developed by Mangold et al. [48], and pent-upped
needs for refurbishment have been evenly distributed between year 2020 and 2030.
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Figure 7. Decision tree showing how four building characteristics (renovation status, EPC rating,
suitability for additional façade insulation, and building type) can help determine a tailored energy
retrofitting package for each individual building based on the suggested energy retrofitting packages
described in Section 2.3.
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Figure 8. The figure shows yearly, cumulative: (a) Energy savings potential from the different energy
retrofitting packages and (b) The associated costs. The results are based on the energy retrofitting
strategy presented in Figure 7 and the referred energy retrofitting packages [44]. This figure is based on
the assumption that buildings that are not suitable for additional façade insulation are not allocated
Package 3, and that buildings are refurbished, and energy retrofitted when they reach their expected
service life of 50 years. The expected service life has been adjusted based on previous refurbishments,
and pent-upped needs for refurbishment have been evenly distributed between year 2020 and 2030.
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Figure 9. The figure shows yearly, cumulative: (a) Energy savings potential from the different energy
retrofitting packages and (b) The associated costs. The results are based on the energy retrofitting
strategy presented in Figure 7 and the referred energy retrofitting packages [44]. This figure is based
on the assumption that 50% of buildings not suitable for additional façade insulation are allocated
Package 3, and that buildings are refurbished and energy retrofitted when they reach their expected
service life of 50 years. The expected service life has been adjusted based on previous refurbishments,
and pent-upped needs for refurbishment have been evenly distributed between year 2020 and 2030.

Figure 8a shows that with the more conservative approach, the yearly energy savings potential is
rather evenly distributed between energy retrofitting package 2 and package 3. This is explained by
the fact that the high energy savings from energy retrofitting package 3 compensate for the relatively
low suitability of energy retrofitting package 3 among the multifamily buildings 1945–1975 (32%).
Consequently, despite a relatively low feasibility in the concerned part of the building stock, the energy
savings potential from energy retrofitting package 3 constitutes a significant part of the total energy
savings potential in this part of the building stock. Yet, it can also be concluded that an equally
significant part of the total energy savings potential is constituted by energy retrofitting package 2,
where energy savings are approximately 25% (as seen in Table 2). As shown in Figure 8b, the higher
energy savings in energy retrofitting package 3 come at a considerable cost.

Figure 9a shows that the less conservative approach markedly increases the share of energy
savings coming from Package 3. Compared to the results in Figure 8a, Figure 9a show rewards in
terms of energy savings for compromising the historical and cultural preservation. The cost for this
reward is however significant, as can be seen in Figure 9b. Based on the strategy for energy retrofitting
in Figure 7, the results in Figure 8a,b and Figure 9a,b showcase how building characteristics can be
applied to estimate the national energy savings potential and the associated costs under different
assumptions. More specifically, enriched building databases can help create scenarios for the national
feasibility of certain energy conservation measures and pinpoint building types with high and low
energy savings potential. This knowledge is useful to improve the national long-term renovation
strategy and can facilitate decision-making in the area of energy policy.

5. Discussion

In this paper, Google Street View data collection together with ML were used to enrich existing
building databases with characteristics relevant for investigating buildings’ energy retrofitting potential.
This section will first discuss the challenges and opportunities of using ML methods to enrich building
databases (Section 5.1). Subsequently, the benefits of enriching databases with building characteristics
relevant for energy retrofitting will be discussed (Section 5.2). Finally, Section 5.3 will provide a short
discussion on the main contributions of this paper.

5.1. Using Machine Learning to Enrich Building Databases

This paper has demonstrated how ML methods can be used to enrich building databases with
new information based on a small sample of expert observations. Previously unregistered building
characteristics were observed in Google Street View for a representative sample of the concerned
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building stock, and these observations could then be used to develop ML models that were used
to predict the building characteristics for the entire multifamily building stock from 1945–1975.
The building characteristics in this paper could be predicted with an accuracy of approximately 70–90%,
and it was found that building type was easier to predict (accuracy 88.9%) than the more detailed
characteristics eaves overhang and façade material (accuracy 72.5%).

Whether a certain prediction accuracy is enough depends on the application and purpose of the
prediction, as well as the potential cost of misclassifications. In the case of the predictions in this
paper, the purpose is to improve estimations of national energy savings potential. This means that
a prediction accuracy above 50% (i.e., higher accuracy than a random model) will contribute to the
purpose of improving estimations as the alternative would be estimations without concern regarding
the feasibility of certain energy conservation measures. Owing to that, the attained model accuracies
are considered sufficient for the intended purpose of the predictions. Moreover, as prediction accuracy
is dependent on a simplified model of reality, e.g., that there only are four different multifamily building
types constructed 1945–1975, it is rarely expected to reach an accuracy of 100%.

Although image recognition could be a more feasible method to predict more detailed building
characteristics, there are benefits of using building-specific data as input features rather than images.
One benefit is that using building data instead of building images allows for increased expert influence,
as features for ML models can be selected by researchers with expert knowledge on the analysed
building stock. In this study, a combination of expert knowledge and regression methods was used
for feature selection, which thus allowed expert influence without closing the doors to unexpected
features. This in turn led to generation of ML models that were not entirely of “black-box” character,
which is likely to appeal to researchers who are new to applying ML in their building stock research.

The results of this paper thus imply that ML methods can be suitable for predicting building
characteristics and enriching national building databases, especially for the application of improving
estimations on a national level. Predictions will never constitute decision support for retrofits of
specific buildings, as this requires a high level of accuracy and detail. It is thus first and foremost for
planning and estimations on national and regional levels that the methods developed in this paper
are useful.

Future work could explore image recognition as used in the studies by Zeppelzauer et al. [29]
and Li et al. [30] to enrich building databases with more building characteristics relevant for energy
retrofitting. Similar methods could also be useful to predict where energy retrofitting measures such as
additional façade insulation have already been done, as such information rarely is available in national
registers. Although Google Street View was used to collect observations in this study, similar studies
could also be done using other types of sample observations of non-ocular building characteristics.
Records from building inventories could e.g., provide information on the prevalence of certain materials
or chemical substances that could be used to predict the potential occurrence of such materials and
substances in the entire building stock and in specific building types.

As buildings often have been constructed with certain characteristics during different periods
of time, they constitute a suitable subject for ML methods as they are likely to display distinct
patterns in choice of, e.g., materials, morphology, and construction methods over time. The Swedish
multifamily building stock 1945–1975 and the results of this paper constitute an evident example of
this. Similar traits of building stocks worldwide motivate an increased use of ML methods to enrich
building databases.

5.2. Implications of the Ability to Tailor Energy Retrofits

Enriching building databases with building characteristics relevant for energy retrofitting enables
more accurate estimations of the national energy savings potential. More specifically, it can enable
more accurate estimations of which energy conservation measures that are feasible and for which
types of buildings. This paper has showcased how building database enrichment can be used to
tailor energy retrofitting packages for the entire Swedish multifamily building stock from 1945–1975.
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Such estimations elevate the discussion on energy retrofitting to a more realistic level. Although it
is explicitly stated that the long-term renovation strategy should facilitate transformation of existing
buildings into nearly zero-energy buildings, which in most cases requires energy performance
improvements of 50% or more, the results of this paper suggest that with regards to matters of
cultural preservation and cost-effectiveness, it is likely that many buildings will only achieve energy
performance improvements of approximately 25%. This is based on the finding that a minority of the
existing buildings 1945–1975 are readily suitable for additional façade insulation, and that a significant
part of the energy savings is likely to stem from less intrusive energy conservation measures. More so,
cultural and historical preservation is only one out of several values that can conflict with deep energy
retrofitting. Other values such as social justice and rights to affordable housing are likely to further
infringe on the potential for deep energy retrofitting [48–50].

As all EU member states are obliged to provide a long-term renovation strategy every three years in
order to comply with directive 2018/844 on the energy performance of buildings [3], similar applications
of building database enrichment could be adopted elsewhere. In this paper, pre-constructed energy
retrofitting packages were used in order to estimate the energy savings potential, and although similar
material is likely to be found in other EU member states, studies can also focus on the feasibility of
specific measures rather than packages of measures. Ultimately, ML methods for building database
enrichment should facilitate the upscaling of limited information to regional or national level and
enable more accurate estimations of energy saving potentials. This will provide a strong foundation for
improved policies and more feasible roadmaps for improved energy efficiency in the building stock.

5.3. Contribution

We would finally like to emphasise what we consider to be the main takeaways from this study.
In this paper, we are making two different types of observations and predictions for each observed
building. First, the building type is classified for which different renovation packages have been
developed [44]. Second, specific features that might enable or restrict energy retrofitting depths were
observed. The primary contribution of this paper is the addition of building type as a building-specific
characteristic. This makes it possible to apply building-specific retrofitting strategies with associated
costs and energy savings. As for the secondary contribution, choice of energy retrofitting depths (such
as whether to add additional façade insulation or not) is a more complex matter: there are many
building features that are of relevance of which few are visually observable, and energy retrofitting
depth is ultimately decided by the building owner whom have a host of different parameters and
uncertainties to consider. Furthermore, when the results of the building specific predictions are turned
into possible long-term renovation strategies, numerous of other assumptions need to be made on
a building stock level. While this research was used for the Swedish long-term renovation strategy,
this paper does not explore the building stock level assumptions needed to provide decision support.
The scope of the paper is instead limited to the building specific predictions using ML methods.

Finally, it is the use of ML methods and quick observations in Google Street View to enrich national
building databases that is the main contribution of this paper. This showcases how access to national
building stock data can generate new data that enables a wider range of analyses at the national level.

6. Conclusions

Based on 514 ocular observations collected from Google Street View, this paper has explored using
machine learning methods to enrich building databases with new building characteristics relevant for
estimating the energy retrofitting potential. With the aim to utilise these building characteristics to
improve national estimations of energy savings potential, machine learning was used to predict the
building characteristics (i) building type and (ii) suitability for additional façade insulation. This was
done for all multifamily buildings in Sweden constructed between 1945 and 1975 based on the Swedish
database of energy performance certificates. It was found that these building characteristics could be
predicted with a model accuracy of 88.9% and 72.5% respectively, which was considered a sufficient
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level of accuracy for the intended applications. These results were finally used to exemplify the national
energy savings potential in the multifamily building stock 1945–1975 under different assumptions.

Two main takeaways can be concluded from this paper. First, due to the time-dependent
characteristics of buildings, building stocks are suitable subjects for machine learning methods as
time-dependent patterns are likely to be found. The prospects for increased use of machine learning
methods for building database enrichment are thus promising in a wide range of applications. Second,
machine learning methods for enriching building databases with characteristics relevant for energy
retrofitting showed to offer new insights into potential scenarios for energy savings from different
energy conservation measures. For example, it was found that many of the multifamily buildings
1945–1975 were not suitable for additional façade insulation when considering the cultural preservation
of façades and extension of eaves overhang. There are thus great opportunities for machine learning
applications in building database enrichment to offer more accurate estimations of national energy
savings potential, and to provide insights in trade-offs that could occur between energy savings and
other values in the building stock.
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Appendix A

Table A1. An overview of the three energy retrofitting packages (1–3) in the Reference [28] and the
energy conservation measures in each of these packages.

Package 1—Operation Optimisation
Package 2—Update to more Efficient

Components and Smaller
Supplements

Package 3—Long-Term
Sustainable Envelope and

Ventilation

Check that ventilation flows are in
accordance with projected flows

Change circulation pumps to effective
pumps with the accurate capacity

Install heat exchange from
exhaust air

Lower temperature in stairwell to 15 ◦C Change to energy efficient fans Change to windows with
better U-value

Adjustment of temperature of incoming air
flow (only for FTX)

Additional insulation of pipes and
conduits where possible

Additional façade insulation,
10 cm

Limit ventilation flows in areas that are not
constantly occupied Upgrade laundry equipment

Review of control systems to minimise
energy losses

Complement existing windows with
insulating windowpanes

Review and update operational instructions Additional insulation in attic, 20 cm

Develop routines for operational statistics Installation of individual metering
and billing of domestic hot water

Automatics control of stairwell lightning
and switch to energy efficient light bulbs

Adjustment of heating system to minimise
temperature gradients in the building

Lower indoor temperature to 21 ◦C
Education of operational managers on the

building’s systems
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