Spara och bevara* bibliographic database

Whitman, Chris J. and Prizemana, Oriel and Walker, Pete and McCaigc, Iain and RheeDuverne, Soki Hygrothermal Monitoring of Replacement Infill Panels for Historic Timber-Frame Buildings: Initial Findings. Hygrothermal Monitoring of Replacement Infill Panels for Historic Timber-Frame Buildings: Initial Findings.

[img]
Preview
Text
ICMB21-Special Issue-CW-2022.pdf

Download (1MB) | Preview
Official URL: https://ucl.scienceopen.com/document_file/c29edcf6...

Abstract

Energy retrofits aim to improve the thermal performance of buildings’ external envelopes. With buildings of traditional construction there exists the risk that these improvements may lead to interstitial condensation and moisture accumulation. For historic timber-framed buildings, this potentially exposes the embedded historic timbers to conditions favouring fungal decay and insect infestation. Hygrothermal digital simulations can assess this risk, however these have limitations, especially regarding the study of historic and traditional materials, due to a lack of accurate material data. The research presented in this paper therefore utilizes the monitoring of physical test panels to examine the performance of four replacement infill details. These are, traditional wattle and daub, a composite of wood fibre and wood wool boards, expanded cork board, and hempcrete. The article focuses on the design and construction of the test cell and presents initial results from the first year of monitoring, following the initial drying phase. These showed no evidence of interstitial condensation in any of the panel build-ups, with increases in moisture content correlating directly with climatic measurements of wind-driven rain. Infill materials with low moisture permeability were seen to produce higher moisture contents at the interface with the external render due to the concentration of moisture at this point. Those panels finished in the more moisture permeable lime hemp plaster, overall present lower moisture contents, with reduced drying times. The use of perimeter, non-moisture permeable, sealants would appear to potentially trap moisture at the junction between infill and historic timber-frame. The monitoring work is ongoing.

Item Type: Article
Uncontrolled Keywords: Interstitial; Hygrothermal; Behaviour; Moisture Content; Monitoring; Traditional Timber-Frame; Energy; Retrofit; Sustainability in architecture and the built environment; Climate change and urban areas; Energy;
Subjects: English > Monitoring
Depositing User: Susanna Carlsten
Date Deposited: 11 May 2022 06:59
Last Modified: 11 May 2022 06:59
URI: http://eprints.sparaochbevara.se/id/eprint/1157

Actions (login required)

View Item View Item