Spara och bevara* bibliographic database

Gustavsson, Leif and Piccardo, Chiara Cost Optimized Building Energy Retrofit Measures and Primary Energy Savings under Different Retrofitting Materials, Economic Scenarios, and Energy Supply †. Journals Energies, Volume 15, Issue 3, 15. ISSN 3

[img] Text
15/3/1009 - Published Version

Download (322kB)
Official URL: https://www.mdpi.com/1996-1073/15/3/1009

Abstract

We analyze conventional retrofit building materials, aluminum, rock, and glass wool materials and compared such materials with wood-based materials to understand the lifecycle primary energy implications of moving from non-renewable to wood-based materials. We calculate cost optimum retrofit measures for a multi-apartment building in a lifecycle perspective, and lifecycle primary energy savings of each optimized measure. The retrofit measures consist of the thermal improvement of windows with varied frame materials, as well as extra insulation of attic floor, basement walls, and external walls with varied insulation materials. The most renewable-based heat supply is from a bioenergy-based district heating (DH) system. We use the marginal cost difference method to calculate cost-optimized retrofit measures. The net present value of energy cost savings of each measure with a varied energy performance is calculated and then compared with the calculated retrofit cost to identify the cost optimum of each measure. In a sensitivity analysis, we analyze the cost optimum retrofit measures under different economic and DH supply scenarios. The retrofit costs and primary energy savings vary somewhat between non-renewable and wood-based retrofit measures but do not influence the cost optimum levels significantly, as the economic parameters do. The lifecycle primary use of wood fiber insulation is about 76% and 80% less than for glass wool and rock wool, respectively. A small-scale DH system gives higher primary energy and cost savings compared to larger DH systems. The optimum final energy savings, in one of the economic scenarios, are close to meeting the requirements in one of the Swedish passive house standards.

Item Type: Article
Uncontrolled Keywords: energy retrofit; retrofit cost; district heating; building material; life cycle
Subjects: English > Climate Change Adaptation
Depositing User: Susanna Carlsten
Date Deposited: 06 Apr 2022 09:10
Last Modified: 06 Apr 2022 09:10
URI: http://eprints.sparaochbevara.se/id/eprint/1120

Actions (login required)

View Item View Item